Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Damage-associated molecular patterns in cancer: a double-edged sword

Abstract

Damage-associated molecular patterns (DAMPs) are released in response to cell death and stress, and are potent triggers of sterile inflammation. Recent evidence suggests that DAMPs may also have a key role in the development of cancer, as well as in the host response to cytotoxic anti-tumor therapy. As such, DAMPs may exert protective functions by alerting the immune system to the presence of dying tumor cells, thereby triggering immunogenic tumor cell death. On the other hand, cell death and release of DAMPs may also trigger chronic inflammation and, thereby promote the development or progression of tumors. Here, we will review the contribution of candidate DAMPs and their receptors, and discuss the evidence for DAMPs as tumor-promoting and anti-tumor effectors, as well as unsolved questions such as DAMP release from non-tumor cells as well as the existence of tumor-specific DAMPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Dvorak HF, Tumors, Wounds That . Do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  2. Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ . Wounding and its role in Rsv-mediated tumor formation. Science 1985; 230: 676–678.

    CAS  PubMed  Google Scholar 

  3. Hockel M, Dornhofer N . The hydra phenomenon of cancer: why tumors recur locally after microscopically complete resection? Cancer Res 2005; 65: 2997–3002.

    PubMed  Google Scholar 

  4. Kaczmarek A, Vandenabeele P, Krysko DV . Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38: 209–223.

    CAS  PubMed  Google Scholar 

  5. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.

    CAS  PubMed  Google Scholar 

  6. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31: 1062–1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P . Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12: 860–875.

    CAS  PubMed  Google Scholar 

  8. Chen GY, Nunez G . Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10: 826–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 2007; 220: 60–81.

    CAS  PubMed  Google Scholar 

  10. Kono H, Rock KL . How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8: 279–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G . Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39: 74–88.

    CAS  PubMed  Google Scholar 

  12. Kroemer G, Galluzzi L, Kepp O, Zitvogel L . Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31: 51–72.

    CAS  PubMed  Google Scholar 

  13. Balkwill F, Mantovani A . Inflammation and cancer: back to virchow? Lancet 2001; 357: 539–545.

    CAS  PubMed  Google Scholar 

  14. Ben-Neriah Y, Karin M . Inflammation meets cancer, with Nf-kappab as the matchmaker. Nat Immunol 2011; 12: 715–723.

    Article  CAS  PubMed  Google Scholar 

  15. Wynn TA, Ramalingam TR . Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18: 1028–1040.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pasparakis M, Vandenabeele P . Necroptosis and its role in inflammation. Nature 2015; 517: 311–320.

    CAS  PubMed  Google Scholar 

  17. Kreuzaler P, Watson CJ . Killing a Cancer: what are the alternatives? Nat Rev Cancer 2012; 12: 411–424.

    CAS  PubMed  Google Scholar 

  18. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F . Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 2008; 3: e2599.

    PubMed  PubMed Central  Google Scholar 

  19. Antonioli L, Blandizzi C, Pacher P, Hasko G . Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013; 13: 842–857.

    CAS  PubMed  Google Scholar 

  20. Srikrishna G, Freeze HH . Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009; 11: 615–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ . HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28: 367–388.

    CAS  PubMed  Google Scholar 

  22. Bresnick AR, Weber DJ, Zimmer DB . S100 proteins in cancer. Nat Rev Cancer 2015; 15: 96–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–1059.

    CAS  PubMed  Google Scholar 

  24. Guo ZS, Naik A, O'Malley ME, Popovic P, Demarco R, Hu Y et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes Spi-1 and Spi-2. Cancer Res 2005; 65: 9991–9998.

    CAS  PubMed  Google Scholar 

  25. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPS. Mol Cell 2011; 43: 432–448.

    CAS  PubMed  Google Scholar 

  26. Vanlangenakker N, Vanden Berghe T, Vandenabeele P . Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 2012; 19: 75–86.

    CAS  PubMed  Google Scholar 

  27. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123: 321–334.

    CAS  PubMed  Google Scholar 

  28. Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S et al. Molecular Mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2014; 21: 79–91.

    CAS  PubMed  Google Scholar 

  29. Antonioli L, Pacher P, Vizi ES, Hasko G . Cd39 and Cd73 in immunity and inflammation. Trends Mol Med 2013; 19: 355–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 2003; 22: 5551–5560.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through toll-like receptor 9. J Hepatol 2015; 63: 114–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ladoire S, Penault-Llorca F, Senovilla L, Dalban C, Enot D, Locher C et al. Combined evaluation of Lc3b Puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 2015; 11: 1878–1890.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 2012; 72: 3290–3301.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ et al. Functions of S100 proteins. Curr Mol Med 2013; 13: 24–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL . Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 2007; 13: 851–856.

    CAS  PubMed  Google Scholar 

  36. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14: 156–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fettelschoss A, Kistowska M, LeibundGut-Landmann S, Beer HD, Johansen P, Senti G et al. Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression. Proc Natl Acad Sci USA 2011; 108: 18055–18060.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rider P, Carmi Y, Voronov E, Apte RN . Interleukin-1alpha. Semin Immunol 2013; 25: 430–438.

    CAS  PubMed  Google Scholar 

  39. Villarreal DO, Weiner DB . Interleukin 33: a switch-hitting cytokine. Curr Opin Immunol 2014; 28: 102–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN et al. Interleukin-33/St2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 2014; 134: 1669–1682.

    CAS  PubMed  Google Scholar 

  41. Maywald RL, Doerner SK, Pastorelli L, De Salvo C, Benton SM, Dawson EP et al. IL-33 activates tumor stroma to promote intestinal polyposis. Proc Natl Acad Sci USA 2015; 112: E2487–E2496.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu X, Zhu L, Lu X, Bian H, Wu X, Yang W et al. IL-33/St2 pathway contributes to metastasis of human colorectal cancer. Biochem Biophys Res Commun 2014; 453: 486–492.

    CAS  PubMed  Google Scholar 

  43. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Renehan AG, Zwahlen M, Egger M . Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer 2015; 15: 484–498.

    CAS  PubMed  Google Scholar 

  45. Hecht SS . Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol 2002; 3: 461–469.

    CAS  PubMed  Google Scholar 

  46. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  47. Qian BZ, Pollard JW . Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. de Visser KE, Eichten A, Coussens LM . Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6: 24–37.

    CAS  PubMed  Google Scholar 

  49. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 2009; 16: 295–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M . B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 2010; 464: 302–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015; 16: 1235–1244.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng BQ, Jia CQ, Liu CT, Lu XF, Zhong N, Zhang ZL et al. Serum High Mobility Group Box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Dig Liver Dis 2008; 40: 446–452.

    CAS  PubMed  Google Scholar 

  53. Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D et al. Serum High Mobility Group Box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 2009; 7: 38.

    PubMed  PubMed Central  Google Scholar 

  54. Brezniceanu ML, Volp K, Bosser S, Solbach C, Lichter P, Joos S et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 2003; 17: 1295–1297.

    CAS  PubMed  Google Scholar 

  55. Choi YR, Kim H, Kang HJ, Kim NG, Kim JJ, Park KS et al. Overexpression of High Mobility Group Box 1 in gastrointestinal stromal tumors with kit mutation. Cancer Res 2003; 63: 2188–2193.

    CAS  PubMed  Google Scholar 

  56. Wild CA, Brandau S, Lotfi R, Mattheis S, Gu X, Lang S et al. HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol 2012; 48: 409–416.

    CAS  PubMed  Google Scholar 

  57. Wu D, Ding Y, Wang S, Zhang Q, Liu L . Increased expression of High Mobility Group Box 1 (HMGB1) Is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol 2008; 216: 167–175.

    CAS  PubMed  Google Scholar 

  58. Meyer A, Staratschek-Jox A, Springwald A, Wenk H, Wolf J, Wickenhauser C et al. Non-Hodgkin lymphoma expressing high levels of the danger-signalling protein HMGB1. Leuk Lymphoma 2008; 49: 1184–1189.

    CAS  PubMed  Google Scholar 

  59. Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 2015; 125: 539–550.

    PubMed  Google Scholar 

  60. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 2007; 26: 1129–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Furstenberger G, Muller-Decker K et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 2008; 205: 275–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pusterla T, Nemeth J, Stein I, Wiechert L, Knigin D, Marhenke S et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology 2013; 58: 363–373.

    CAS  PubMed  Google Scholar 

  63. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405: 354–360.

    CAS  PubMed  Google Scholar 

  64. He Y, Zha J, Wang Y, Liu W, Yang X, Yu P . Tissue damage-associated "danger signals" influence T-cell responses that promote the progression of preneoplasia to cancer. Cancer Res 2013; 73: 629–639.

    CAS  PubMed  Google Scholar 

  65. Ran S . The role of Tlr4 in chemotherapy-driven metastasis. Cancer Res 2015; 75: 2405–2410.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou J, Chen X, Gilvary DL, Tejera MM, Eksioglu EA, Wei S et al. HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells. Sci Rep 2015; 5: 15085.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo Y, Chihara Y, Fujimoto K, Sasahira T, Kuwada M, Fujiwara R et al. High Mobility Group Box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer 2013; 49: 741–751.

    CAS  PubMed  Google Scholar 

  68. Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 2010; 17: 666–676.

    CAS  PubMed  Google Scholar 

  69. Schlueter C, Weber H, Meyer B, Rogalla P, Roser K, Hauke S et al. Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol 2005; 166: 1259–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H et al. Tumor-infiltrating DCS suppress nucleic acid-mediated innate immune responses through interactions between the receptor Tim-3 and the alarmin HMGB1. Nat Immunol 2012; 13: 832–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P et al. Expression of P2x7 receptor increases in vivo tumor growth. Cancer Res 2012; 72: 2957–2969.

    CAS  PubMed  Google Scholar 

  72. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440: 228–232.

    CAS  PubMed  Google Scholar 

  73. Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I et al. ATP/P2x7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis 2014; 5: e1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hofman P, Cherfils-Vicini J, Bazin M, Ilie M, Juhel T, Hebuterne X et al. Genetic and pharmacological inactivation of the purinergic P2rx7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res 2015; 75: 835–845.

    CAS  PubMed  Google Scholar 

  75. Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C et al. Blockade of A2a receptors potently suppresses the metastasis of Cd73+ tumors. Proc Natl Acad Sci USA 2013; 110: 14711–14716.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al. Adenosine generation catalyzed by Cd39 and Cd73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204: 1257–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ et al. Cd73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 2011; 121: 2371–2382.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ et al. Cd73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA 2013; 110: 11091–11096.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D et al. Anti-Cd73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 2010; 107: 1547–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G . S100a8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 2011; 9: 133–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA et al. Mrp8 and Mrp14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13: 1042–1049.

    CAS  PubMed  Google Scholar 

  82. Hiratsuka S, Watanabe A, Aburatani H, Maru Y . Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 1369–1375.

    CAS  PubMed  Google Scholar 

  83. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K et al. The S100a8-serum amyloid A3-Tlr4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 2008; 10: 1349–1355.

    CAS  PubMed  Google Scholar 

  84. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M et al. S100a8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 2008; 83: 1484–1492.

    CAS  PubMed  Google Scholar 

  85. Gupta S, Hussain T, MacLennan GT, Fu P, Patel J, Mukhtar H . Differential expression of S100a2 and S100a4 during progression of human prostate adenocarcinoma. J Clin Oncol 2003; 21: 106–112.

    CAS  PubMed  Google Scholar 

  86. Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M et al. Novel effect of antihelminthic niclosamide on S100a4-mediated metastatic progression in colon cancer. J Natl Cancer Inst 2011; 103: 1018–1036.

    CAS  PubMed  Google Scholar 

  87. Bettum IJ, Vasiliauskaite K, Nygaard V, Clancy T, Pettersen SJ, Tenstad E et al. Metastasis-associated protein S100a4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 2014; 344: 28–39.

    CAS  PubMed  Google Scholar 

  88. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100a9 protein. J Exp Med 2008; 205: 2235–2249.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J et al. RAGE, carboxylated glycans and S100a8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 2008; 29: 2035–2043.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vernon PJ, Loux TJ, Schapiro NE, Kang R, Muthuswamy R, Kalinski P et al. The receptor for advanced glycation end products promotes pancreatic carcinogenesis and accumulation of myeloid-derived suppressor cells. J Immunol 2013; 190: 1372–1379.

    CAS  PubMed  Google Scholar 

  91. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G . Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 2008; 181: 4666–4675.

    CAS  PubMed  Google Scholar 

  92. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J . Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237–241.

    CAS  PubMed  Google Scholar 

  93. Kono H, Chen CJ, Ontiveros F, Rock KL . Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 2010; 120: 1939–1949.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi Y, Evans JE, Rock KL . Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425: 516–521.

    CAS  PubMed  Google Scholar 

  95. Fini MA, Orchard-Webb D, Kosmider B, Amon JD, Kelland R, Shibao G et al. Migratory activity of human breast cancer cells is modulated by differential expression of xanthine oxidoreductase. J Cell Biochem 2008; 105: 1008–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fini MA, Elias A, Johnson RJ, Wright RM . Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med 2012; 1: 16.

    PubMed  PubMed Central  Google Scholar 

  97. Hu DE, Moore AM, Thomsen LL, Brindle KM . Uric acid promotes tumor immune rejection. Cancer Res 2004; 64: 5059–5062.

    CAS  PubMed  Google Scholar 

  98. Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30: 61–69.

    CAS  PubMed  Google Scholar 

  99. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28: 578–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334: 1573–1577.

    CAS  PubMed  Google Scholar 

  101. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220: 47–59.

    CAS  PubMed  Google Scholar 

  102. Ciampricotti M, Hau CS, Doornebal CW, Jonkers J, de Visser KE . Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nat Med 2012; 18: 344–346.

    CAS  PubMed  Google Scholar 

  103. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15: 1170–1178.

    CAS  PubMed  Google Scholar 

  104. Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38: 729–741.

    CAS  PubMed  Google Scholar 

  105. Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 2015; 350: 972–978.

    CAS  PubMed  Google Scholar 

  106. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    CAS  PubMed  Google Scholar 

  107. Pawaria S, Binder RJ . CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun 2011; 2: 521.

    PubMed  Google Scholar 

  108. Zeng G, Aldridge ME, Tian X, Seiler D, Zhang X, Jin Y et al. Dendritic cell surface calreticulin is a receptor for NY-ESO-1: direct interactions between tumor-associated antigen and the innate immune system. J Immunol 2006; 177: 3582–3589.

    CAS  PubMed  Google Scholar 

  109. Hong C, Qiu X, Li Y, Huang Q, Zhong Z, Zhang Y et al. Functional analysis of recombinant calreticulin fragment 39-272: implications for immunobiological activities of calreticulin in health and disease. J Immunol 2010; 185: 4561–4569.

    CAS  PubMed  Google Scholar 

  110. Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P . Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2015; 6: 26841–26860.

    PubMed  PubMed Central  Google Scholar 

  111. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 2010; 467: 863–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Trautmann A . Extracellular ATP in the immune system: more than just a "danger signal". Sci Signal 2009; 2: pe6.

    PubMed  Google Scholar 

  113. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461: 282–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Adinolfi E, Capece M, Franceschini A, Falzoni S, Giuliani AL, Rotondo A et al. Accelerated tumor progression in mice lacking the ATP receptor P2x7. Cancer Res 2015; 75: 635–644.

    CAS  PubMed  Google Scholar 

  115. Draganov D, Gopalakrishna-Pillai S, Chen YR, Zuckerman N, Moeller S, Wang C et al. Modulation of P2x4/P2x7/Pannexin-1 sensitivity to extracellular ATP via ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 2015; 5: 16222.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Romio M, Reinbeck B, Bongardt S, Huls S, Burghoff S, Schrader J . Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and TEFF cells. Am J Physiol Cell Physiol 2011; 301: C530–C539.

    CAS  PubMed  Google Scholar 

  117. Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M . The development and immunosuppressive functions of CD4(+) CD25(+) FOXP3(+) regulatory T cells are under influence of the adenosine-A2a adenosine receptor pathway. Front Immunol 2012; 3: 190.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML . Modulation of A1 and A2b adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis 2014; 5: e1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP et al. Release of High Mobility Group Box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 2005; 174: 7506–7515.

    CAS  PubMed  Google Scholar 

  120. Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B et al. High Mobility Group Box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 2004; 173: 307–313.

    CAS  PubMed  Google Scholar 

  121. Xu J, Jiang Y, Wang J, Shi X, Liu Q, Liu Z et al. Macrophage endocytosis of high-mobility group Box 1 triggers pyroptosis. Cell Death Differ 2014; 21: 1229–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012; 209: 1519–1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME et al. Redox modification of cysteine residues regulates the cytokine activity of High Mobility Group Box-1 (HMGB1). Mol Med 2012; 18: 250–259.

    PubMed  Google Scholar 

  124. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29: 5299–5310.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu X, Messer JS, Wang Y, Lin F, Cham CM, Chang J et al. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Invest 2015; 125: 1098–1110.

    PubMed  PubMed Central  Google Scholar 

  126. Chaiswing L, Oberley TD . Extracellular/microenvironmental redox state. Antioxid Redox Signal 2010; 13: 449–465.

    CAS  PubMed  Google Scholar 

  127. Policastro LL, Ibanez IL, Notcovich C, Duran HA, Podhajcer OL . The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 2013; 19: 854–895.

    CAS  PubMed  Google Scholar 

  128. Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar D et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 2015; 521: 94–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  130. Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I et al. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11B+GR1+ cells. J Immunol 2011; 187: 6120–6129.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Schwabe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, C., Huebener, P. & Schwabe, R. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 35, 5931–5941 (2016). https://doi.org/10.1038/onc.2016.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.104

This article is cited by

Search

Quick links