Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets

Subjects

Abstract

HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Goodman FR . Limb malformations and the human HOX genes. Am J Med Genet 2002; 112: 256–265.

    PubMed  Google Scholar 

  2. Lewis EB . A gene complex controlling segmentation in Drosophila. Nature 1978; 276: 565–570.

    CAS  PubMed  Google Scholar 

  3. Krumlauf R . Hox genes in vertebrate development. Cell 1994; 78: 191–201.

    CAS  PubMed  Google Scholar 

  4. Duboule D, Dolle P . The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989; 8: 1497–1505.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Andreeff M, Ruvolo V, Gadgil S, Zeng C, Coombes K, Chen W et al. HOX expression patterns identify a common signature for favorable AML. Leukemia 2008; 22: 2041–2047.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Collins C, Wang J, Miao H, Bronstein J, Nawer H, Xu T et al. C/EBPalpha is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci USA 2014; 111: 9899–9904.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 2002; 16: 186–195.

    CAS  PubMed  Google Scholar 

  8. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  PubMed  Google Scholar 

  9. Tholouli E, MacDermott S, Hoyland J, Yin JL, Byers R . Quantitative multiplex quantum dot in situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia. Biochem Biophys Res Commun 2012; 425: 333–339.

    CAS  PubMed  Google Scholar 

  10. Choo SW, Russell S . Genomic approaches to understanding Hox gene function. Adv Genet 2011; 76: 55–91.

    CAS  PubMed  Google Scholar 

  11. Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 2011; 147: 1270–1282.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorge S, Ha N, Polychronidou M, Friedrich J, Bezdan D, Kaspar P et al. The cis-regulatory code of Hox function in Drosophila. EMBO J 2012; 31: 3323–3333.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Min H, Lee JY, Kim MH . Hoxc gene collinear expression and epigenetic modifications established during embryogenesis are maintained until after birth. Int J Biol Sci 2013; 9: 960–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheth R, Bastida MF, Kmita M, Ros M . "Self-regulation," a new facet of Hox genes' function. Dev Dyn 2014; 243: 182–191.

    CAS  PubMed  Google Scholar 

  15. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472: 120–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 2011; 144: 214–226.

    CAS  PubMed  Google Scholar 

  17. Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M et al. Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 2011; 7: e1001343.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G . Genome regulation by polycomb and trithorax proteins. Cell 2007; 128: 735–745.

    CAS  PubMed  Google Scholar 

  19. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  20. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  21. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997; 90: 1799–1806.

    CAS  PubMed  Google Scholar 

  22. Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P . Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007; 1: 324–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Muntean AG, Hess JL . The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 2012; 7: 283–301.

    CAS  PubMed  Google Scholar 

  24. Radulovic V, de Haan G, Klauke K . Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 2013; 27: 523–533.

    CAS  PubMed  Google Scholar 

  25. Rawat VP, Humphries RK, Buske C . Beyond Hox: the role of ParaHox genes in normal and malignant hematopoiesis. Blood 2012; 120: 519–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brooke NM, Garcia-Fernandez J, Holland PW . The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 1998; 392: 920–922.

    CAS  PubMed  Google Scholar 

  27. Davidson AJ, Zon LI . The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev Biol 2006; 292: 506–518.

    CAS  PubMed  Google Scholar 

  28. McKinney-Freeman SL, Lengerke C, Jang IH, Schmitt S, Wang Y, Philitas M et al. Modulation of murine embryonic stem cell-derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood 2008; 111: 4944–4953.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Yabuuchi A, McKinney-Freeman S, Ducharme DM, Ray MK, Chawengsaksophak K et al. Cdx gene deficiency compromises embryonic hematopoiesis in the mouse. Proc Natl Acad Sci USA 2008; 105: 7756–7761.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 2003; 425: 300–306.

    CAS  PubMed  Google Scholar 

  31. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 2008; 18: 1433–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71: 6320–6326.

    CAS  PubMed  Google Scholar 

  33. Chen FJ, Sun M, Li SQ, Wu QQ, Ji L, Liu ZL et al. Upregulation of the long non-coding RNA HOTAIR promotes esophageal squamous cell carcinoma metastasis and poor prognosis. Mol Carcinog 2013; 52: 908–915.

    CAS  PubMed  Google Scholar 

  34. Cui L, Xie XY, Wang H, Chen XL, Liu SL, Hu LN . Expression of long non-coding RNA HOTAIR mRNA in ovarian cancer. Sichuan Da Xue Xue Bao Yi Xue Ban 2013; 44: 57–59.

    CAS  PubMed  Google Scholar 

  35. Ge XS, Ma HJ, Zheng XH, Ruan HL, Liao XY, Xue WQ et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci 2013; 104: 1675–1682.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. He X, Bao W, Li X, Chen Z, Che Q, Wang H et al. The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int J Mol Med 2014; 33: 325–332.

    CAS  PubMed  Google Scholar 

  37. Liu XH, Liu ZL, Sun M, Liu J, Wang ZX, De W . The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer 2013; 13: 464.

    PubMed  PubMed Central  Google Scholar 

  38. Nakayama I, Shibazaki M, Yashima-Abo A, Miura F, Sugiyama T, Masuda T et al. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int J Oncol 2013; 43: 63–71.

    CAS  PubMed  Google Scholar 

  39. Shi X, Sun M, Liu H, Yao Y, Song Y . Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 2013; 339: 159–166.

    CAS  PubMed  Google Scholar 

  40. Sorensen KP, Thomassen M, Tan Q, Bak M, Cold S, Burton M et al. Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 2013; 142: 529–536.

    PubMed  Google Scholar 

  41. Zhang JX, Han L, Bao ZS, Wang YY, Chen LY, Yan W et al. HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro Oncol 2013; 15: 1595–1603.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhuang Y, Wang X, Nguyen HT, Zhuo Y, Cui X, Fewell C et al. Induction of long intergenic non-coding RNA HOTAIR in lung cancer cells by type I collagen. J Hematol Oncol 2013; 6: 35.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pombo A, Dillon N . Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biology 2015; 16: 245–257.

    CAS  Google Scholar 

  44. Pineault N, Helgason CD, Lawrence HJ, Humphries RK . Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49–57.

    CAS  PubMed  Google Scholar 

  45. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91: 12223–12227.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bijl J, Thompson A, Ramirez-Solis R, Krosl J, Grier DG, Lawrence HJ et al. Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood 2006; 108: 116–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bjornsson JM, Larsson N, Brun AC, Magnusson M, Andersson E, Lundstrom P et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 2003; 23: 3872–3883.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brun AC, Bjornsson JM, Magnusson M, Larsson N, Leveen P, Ehinger M et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 2004; 103: 4126–4133.

    CAS  PubMed  Google Scholar 

  49. Ko KH, Lam QL, Zhang M, Wong CK, Lo CK, Kahmeyer-Gabbe M et al. Hoxb3 deficiency impairs B lymphopoiesis in mouse bone marrow. Exp Hematol 2007; 35: 465–475.

    CAS  PubMed  Google Scholar 

  50. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    CAS  PubMed  Google Scholar 

  51. Crooks GM, Fuller J, Petersen D, Izadi P, Malik P, Pattengale PK et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999; 94: 519–528.

    CAS  PubMed  Google Scholar 

  52. Fuller JF, McAdara J, Yaron Y, Sakaguchi M, Fraser JK, Gasson JC . Characterization of HOX gene expression during myelopoiesis: role of HOX A5 in lineage commitment and maturation. Blood 1999; 93: 3391–3400.

    CAS  PubMed  Google Scholar 

  53. Shimamoto T, Tang Y, Naot Y, Nardi M, Brulet P, Bieberich CJ et al. Hematopoietic progenitor cell abnormalities in Hoxc-8 null mutant mice. J Exp Zool 1999; 283: 186–193.

    CAS  PubMed  Google Scholar 

  54. So CW, Karsunky H, Wong P, Weissman IL, Cleary ML . Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 2004; 103: 3192–3199.

    CAS  PubMed  Google Scholar 

  55. Takeshita K, Bollekens JA, Hijiya N, Ratajczak M, Ruddle FH, Gewirtz AM . A homeobox gene of the Antennapedia class is required for human adult erythropoiesis. Proc Natl Acad Sci USA 1993; 90: 3535–3538.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Izon DJ, Rozenfeld S, Fong ST, Komuves L, Largman C, Lawrence HJ . Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 1998; 92: 383–393.

    CAS  PubMed  Google Scholar 

  57. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89: 1922–1930.

    CAS  PubMed  Google Scholar 

  58. Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood 2005; 106: 3988–3994.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Alharbi RA, Pettengell R, Pandha HS, Morgan R . The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 2013; 27: 1000–1008.

    CAS  PubMed  Google Scholar 

  60. Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Komuves L et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999; 13: 1993–1999.

    CAS  PubMed  Google Scholar 

  61. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Eklund E . The role of Hox proteins in leukemogenesis: insights into key regulatory events in hematopoiesis. Crit Rev Oncog 2011; 16: 65–76.

    PubMed  PubMed Central  Google Scholar 

  63. Sitwala K, Dandekar M, Hess J . HOX Proteins and Leukemia. Int J Clin Exp Pathol 2008; 1: 461–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 2012; 119: 2314–2324.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Faderl S, Kantarjian HM, Estey E, Manshouri T, Chan CY, Rahman Elsaied A et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000; 89: 1976–1982.

    CAS  PubMed  Google Scholar 

  67. Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol 1998; 9: 159–165.

    CAS  PubMed  Google Scholar 

  68. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    CAS  PubMed  Google Scholar 

  69. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

    CAS  PubMed  Google Scholar 

  70. Hess JL . MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 2004; 10: 500–507.

    CAS  PubMed  Google Scholar 

  71. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113: 2375–2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ng RK, Kong CT, So CC, Lui WC, Chan YF, Leung KC et al. Epigenetic dysregulation of leukaemic HOX code in MLL-rearranged leukaemia mouse model. J Pathol 2014; 232: 65–74.

    CAS  PubMed  Google Scholar 

  74. Hoelz A, Debler EW, Blobel G . The structure of the nuclear pore complex. Annu Rev Biochem 2011; 80: 613–643.

    CAS  PubMed  Google Scholar 

  75. Dieppois G, Stutz F . Connecting the transcription site to the nuclear pore: a multi-tether process that regulates gene expression. J Cell Sci 2010; 123: 1989–1999.

    CAS  PubMed  Google Scholar 

  76. Gough SM, Slape CI, Aplan PD . NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 2011; 118: 6247–6257.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Saw J, Curtis DJ, Hussey DJ, Dobrovic A, Aplan PD, Slape CI . The fusion partner specifies the oncogenic potential of NUP98 fusion proteins. Leuk Res 2013; 37: 1668–1673.

    CAS  PubMed  Google Scholar 

  78. Novak RL, Harper DP, Caudell D, Slape C, Beachy SH, Aplan PD . Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes. Exp Hematol 2012; 40: 1016–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. de Rooij JD, Hollink IH, Arentsen-Peters ST, van Galen JF, Berna Beverloo H, Baruchel A et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 2013; 27: 2280–2288.

    CAS  PubMed  Google Scholar 

  80. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, Kuipers JE et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 2011; 118: 3645–3656.

    CAS  PubMed  Google Scholar 

  81. Falini B, Sportoletti P, Martelli MP . Acute myeloid leukemia with mutated NPM1: diagnosis, prognosis and therapeutic perspectives. Curr Opin Oncol 2009; 21: 573–581.

    PubMed  Google Scholar 

  82. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 2009; 23: 1731–1743.

    CAS  PubMed  Google Scholar 

  83. Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia 2007; 21: 2000–2009.

    CAS  PubMed  Google Scholar 

  84. Gurumurthy M, Tan CH, Ng R, Zeiger L, Lau J, Lee J et al. Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase II transcription. J Mol Biol 2008; 378: 302–317.

    CAS  PubMed  Google Scholar 

  85. Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK et al. MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol 2011; 39: e1–e5.

    Google Scholar 

  86. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4545.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011; 43: 470–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    CAS  PubMed  Google Scholar 

  89. Bansal D, Scholl C, Frohling S, McDowell E, Lee BH, Dohner K et al. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA 2006; 103: 16924–16929.

    PubMed  PubMed Central  Google Scholar 

  90. Rawat VP, Cusan M, Deshpande A, Hiddemann W, Quintanilla-Martinez L, Humphries RK et al. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc Natl Acad Sci USA 2004; 101: 817–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shima H, Yamagata K, Aikawa Y, Shino M, Koseki H, Shimada H et al. Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion. Int J Hematol 2014; 99: 21–31.

    CAS  PubMed  Google Scholar 

  92. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    CAS  PubMed  Google Scholar 

  93. Hassawi M, Shestakova EA, Fournier M, Lebert-Ghali CE, Vaisson G, Frison H et al. Hoxa9 collaborates with E2A-PBX1 in mouse B cell leukemia in association with Flt3 activation and decrease of B cell gene expression. Dev Dyn 2014; 243: 145–158.

    CAS  PubMed  Google Scholar 

  94. Inoue D, Kitaura J, Togami K, Nishimura K, Enomoto Y, Uchida T et al. Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations. J Clin Invest 2013; 123: 4627–4640.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Polychronidou M, Lohmann I . Cell-type specific cis-regulatory networks: insights from Hox transcription factors. Fly 2013; 7: 13–17.

    CAS  PubMed  Google Scholar 

  96. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D et al. Homeodomain-DNA recognition. Cell 1994; 78: 211–223.

    CAS  PubMed  Google Scholar 

  97. Mann RS . The specificity of homeotic gene function. BioEssays 1995; 17: 855–863.

    CAS  PubMed  Google Scholar 

  98. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 2008; 133: 1266–1276.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mann RS, Lelli KM, Joshi R . Hox specificity: unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88: 63–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA . Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 2008; 133: 1277–1289.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C et al. Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 2012; 119: 388–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Busser BW, Gisselbrecht SS, Shokri L, Tansey TR, Gamble CE, Bulyk ML et al. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs. PloS one 2013; 8: e69385.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lelli KM, Noro B, Mann RS . Variable motif utilization in homeotic selector (Hox)-cofactor complex formation controls specificity. Proc Natl Acad Sci USA 2011; 108: 21122–21127.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Breitinger C, Maethner E, Garcia-Cuellar MP, Slany RK . The homeodomain region controls the phenotype of HOX-induced murine leukemia. Blood 2012; 120: 4018–4027.

    CAS  PubMed  Google Scholar 

  105. Misra M, Sours E, Lance-Jones C . Hox transcription factors influence motoneuron identity through the integrated actions of both homeodomain and non-homeodomain regions. Dev Dyn 2012; 241: 718–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Guerreiro I, Casaca A, Nunes A, Monteiro S, Novoa A, Ferreira RB et al. Regulatory role for a conserved motif adjacent to the homeodomain of Hox10 proteins. Development 2012; 139: 2703–2710.

    CAS  PubMed  Google Scholar 

  107. Brayer KJ, Lynch VJ, Wagner GP . Evolution of a derived protein-protein interaction between HoxA11 and Foxo1a in mammals caused by changes in intramolecular regulation. Proc Natl Acad Sci USA 2011; 108: E414–E420.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Slattery M, Ma L, Negre N, White KP, Mann RS . Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila. PloS One 2011; 6: e14686.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Choo SW, White R, Russell S . Genome-wide analysis of the binding of the Hox protein Ultrabithorax and the Hox cofactor Homothorax in Drosophila. PloS One 2011; 6: e14778.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Salma N, Xiao H, Mueller E, Imbalzano AN . Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor gamma nuclear hormone receptor. Mol Cell Biol 2004; 24: 4651–4663.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ladam F, Sagerstrom CG . Hox regulation of transcription: more complex(es). Dev Dyn 2014; 243: 4–15.

    CAS  PubMed  Google Scholar 

  113. Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F . Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 2014; 243: 59–75.

    CAS  PubMed  Google Scholar 

  114. Papadopoulos DK, Skouloudaki K, Adachi Y, Samakovlis C, Gehring WJ . Dimer formation via the homeodomain is required for function and specificity of sex combs reduced in Drosophila. Dev Biol 2012; 367: 78–89.

    CAS  PubMed  Google Scholar 

  115. Penkov D, Mateos San Martin D, Fernandez-Diaz LC, Rossello CA, Torroja C, Sanchez-Cabo F et al. Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins. Cell Rep 2013; 3: 1321–1333.

    CAS  PubMed  Google Scholar 

  116. Choe SK, Ladam F, Sagerstrom CG . TALE factors poise promoters for activation by Hox proteins. Dev Cell 2014; 28: 203–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sambrani N, Hudry B, Maurel-Zaffran C, Zouaz A, Mishra R, Merabet S et al. Distinct molecular strategies for Hox-mediated limb suppression in Drosophila: from cooperativity to dispensability/antagonism in TALE partnership. PLoS Genet 2013; 9: e1003307.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rivas ML, Espinosa-Vazquez JM, Sambrani N, Greig S, Merabet S, Graba Y et al. Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function. PLoS Genet 2013; 9: e1003252.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rozovskaia T, Ravid-Amir O, Tillib S, Getz G, Feinstein E, Agrawal H et al. Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proc Natl Acad Sci USA 2003; 100: 7853–7858.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Serrano E, Lasa A, Perea G, Carnicer MJ, Brunet S, Aventin A et al. Acute myeloid leukemia subgroups identified by pathway-restricted gene expression signatures. Acta Haematol 2006; 116: 77–89.

    CAS  PubMed  Google Scholar 

  122. Afonja O, Smith JE Jr, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T et al. MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res 2000; 24: 849–855.

    CAS  PubMed  Google Scholar 

  123. Nakamura T, Largaespada DA, Shaughnessy JD, Jenkins NA, Copeland NG . Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 1996; 12: 149–153.

    CAS  PubMed  Google Scholar 

  124. Wang Z, Iwasaki M, Ficara F, Lin C, Matheny C, Wong SH et al. GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell 2010; 17: 597–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fung TK, Gandillet A, So CW . Selective treatment of mixed-lineage leukemia leukemic stem cells through targeting glycogen synthase kinase 3 and the canonical Wnt/beta-catenin pathway. Curr Opin Hematol 2012; 19: 280–286.

    CAS  PubMed  Google Scholar 

  126. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML . Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008; 455: 1205–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li Z, Zhang Z, Li Y, Arnovitz S, Chen P, Huang H et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 2013; 121: 1422–1431.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Morgan R, Pirard PM, Shears L, Sohal J, Pettengell R, Pandha HS . Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res 2007; 67: 5806–5813.

    CAS  PubMed  Google Scholar 

  129. Merabet S, Dard A . Tracking context-specific transcription factors regulating hox activity. Dev Dyn 2014; 243: 16–23.

    CAS  PubMed  Google Scholar 

  130. Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC et al. Protein interactions of the transcription factor Hoxa1. BMC Dev Biol 2012; 12: 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ferbeyre G, Moriggl R . The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochim Biophys Acta 2011; 1815: 104–114.

    CAS  PubMed  Google Scholar 

  132. Nerlov C . C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 2004; 4: 394–400.

    CAS  PubMed  Google Scholar 

  133. Reisman D, Glaros S, Thompson EA . The SWI/SNF complex and cancer. Oncogene 2009; 28: 1653–1668.

    CAS  PubMed  Google Scholar 

  134. Dintilhac A, Bihan R, Guerrier D, Deschamps S, Pellerin I . A conserved non-homeodomain Hoxa9 isoform interacting with CBP is co-expressed with the 'typical' Hoxa9 protein during embryogenesis. Gene Expr Patterns 2004; 4: 215–222.

    CAS  PubMed  Google Scholar 

  135. Shen WF, Krishnan K, Lawrence HJ, Largman C . The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol Cell Biol 2001; 21: 7509–7522.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lehnertz B, Pabst C, Su L, Miller M, Liu F, Yi L et al. The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev 2014; 28: 317–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bei L, Lu Y, Bellis SL, Zhou W, Horvath E, Eklund EA . Identification of a HoxA10 activation domain necessary for transcription of the gene encoding beta3 integrin during myeloid differentiation. J Biol Chem 2007; 282: 16846–16859.

    CAS  PubMed  Google Scholar 

  138. Lu Y, Goldenberg I, Bei L, Andrejic J, Eklund EA . HoxA10 represses gene transcription in undifferentiated myeloid cells by interaction with histone deacetylase 2. J Biol Chem 2003; 278: 47792–47802.

    CAS  PubMed  Google Scholar 

  139. Wu X, Ellmann S, Rubin E, Gil M, Jin K, Han L et al. ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity. PloS One 2012; 7: e40644.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Vijapurkar U, Fischbach N, Shen W, Brandts C, Stokoe D, Lawrence HJ et al. Protein kinase C-mediated phosphorylation of the leukemia-associated HOXA9 protein impairs its DNA binding ability and induces myeloid differentiation. Mol Cell Biol 2004; 24: 3827–3837.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bandyopadhyay S, Harris DP, Adams GN, Lause GE, McHugh A, Tillmaand EG et al. HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol Cell Biol 2012; 32: 1202–1213.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Calero-Nieto FJ, Joshi A, Bonadies N, Kinston S, Chan WI, Gudgin E et al. HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias. Oncogene 2013; 32: 5471–5480.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Brumatti G, Salmanidis M, Kok CH, Bilardi RA, Sandow JJ, Silke N et al. HoxA9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of HoxA9-dependent leukemia. Oncotarget 2013; 4: 1933–1947.

    PubMed  PubMed Central  Google Scholar 

  144. Breitinger C, Maethner E, Garcia-Cuellar MP, Schambony A, Fischer KD, Schilling K et al. HOX genes regulate Rac1 activity in hematopoietic cells through control of Vav2 expression. Leukemia 2013; 27: 236–238.

    CAS  PubMed  Google Scholar 

  145. Steger J, Fuller E, Garcia-Cuellar MP, Hetzner K, Slany RK . Insulin-like growth factor 1 is a direct HOXA9 target important for hematopoietic transformation. Leukemia 2014; 29: 901–908.

    PubMed  Google Scholar 

  146. Ortega S, Malumbres M, Barbacid M . Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002; 1602: 73–87.

    CAS  PubMed  Google Scholar 

  147. Drexler HG . Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998; 12: 845–859.

    CAS  PubMed  Google Scholar 

  148. Williams RT, Sherr CJ . The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias. Cold Spring Harb Symp Quant Biol 2008; 73: 461–467.

    CAS  PubMed  Google Scholar 

  149. Wolff L, Bies J . p15Ink4b Functions in determining hematopoietic cell fates: implications for its role as a tumor suppressor. Blood Cells Mol Dis 2013; 50: 227–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J et al. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 2011; 8: 649–662.

    CAS  PubMed  Google Scholar 

  151. Rezsohazy R . Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions. Dev Dyn 2014; 243: 117–131.

    CAS  PubMed  Google Scholar 

  152. Ohno Y, Yasunaga S, Janmohamed S, Ohtsubo M, Saeki K, Kurogi T et al. Hoxa9 transduction induces hematopoietic stem and progenitor cell activity through direct down-regulation of geminin protein. PloS one 2013; 8: e53161.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yasunaga S, Ohtsubo M, Ohno Y, Saeki K, Kurogi T, Tanaka-Okamoto M et al. Scmh1 has E3 ubiquitin ligase activity for geminin and histone H2A and regulates geminin stability directly or indirectly via transcriptional repression of Hoxa9 and Hoxb4. Mol Cell Biol 2013; 33: 644–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou B, Liu C, Xu Z, Zhu G . Structural basis for homeodomain recognition by the cell-cycle regulator Geminin. Proc Natl Acad Sci USA 2012; 109: 8931–8936.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsohazy R . The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PloS One 2013; 8: e80387.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Topisirovic I, Kentsis A, Perez JM, Guzman ML, Jordan CT, Borden KL . Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol Cell Biol 2005; 25: 1100–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang Y, Morrone G, Zhang J, Chen X, Lu X, Ma L et al. CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. The EMBO J 2003; 22: 6057–6067.

    CAS  PubMed  Google Scholar 

  158. Schaefer LK, Wang S, Schaefer TS . Functional interaction of Jun and homeodomain proteins. J Biol Chem 2001; 276: 43074–43082.

    CAS  PubMed  Google Scholar 

  159. Shen WF, Montgomery JC, Rozenfeld S, Moskow JJ, Lawrence HJ, Buchberg AM et al. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol 1997; 17: 6448–6458.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Shen WF, Rozenfeld S, Kwong A, Kom ves LG, Lawrence HJ, Largman C . HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 1999; 19: 3051–3061.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Shi X, Bai S, Li L, Cao X . Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. J Biol Chem 2001; 276: 850–855.

    CAS  PubMed  Google Scholar 

  162. Dasse E, Volpe G, Walton DS, Wilson N, Del Pozzo W, O'Neill LP et al. Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells. Blood Cancer J 2012; 2: e76.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang GG, Pasillas MP, Kamps MP . Persistent transactivation by meis1 replaces hox function in myeloid leukemogenesis models: evidence for co-occupancy of meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol Cell Biol 2006; 26: 3902–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Gwin K, Frank E, Bossou A, Medina KL . Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. J Immunol 2010; 185: 6572–6583.

    CAS  PubMed  Google Scholar 

  166. Whelan JT, Ludwig DL, Bertrand FE . HoxA9 induces insulin-like growth factor-1 receptor expression in B-lineage acute lymphoblastic leukemia. Leukemia 2008; 22: 1161–1169.

    CAS  PubMed  Google Scholar 

  167. Hu YL, Passegue E, Fong S, Largman C, Lawrence HJ . Evidence that the Pim1 kinase gene is a direct target of HOXA9. Blood 2007; 109: 4732–4738.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Hess.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, C., Hess, J. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 35, 1090–1098 (2016). https://doi.org/10.1038/onc.2015.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.174

This article is cited by

Search

Quick links