Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme

Abstract

Oxygen and nutrient limitation are common features of the tumor microenvironment and are associated with cancer progression and induction of metastasis. The inefficient vascularization of tumor tissue also limits the penetration of other serum-derived factors, such as lipids and lipoproteins, which can be rate limiting for cell proliferation and survival. Here we have investigated the effect of hypoxia and serum deprivation on sterol regulatory element-binding protein (SREBP) activity and the expression of lipid metabolism genes in human glioblastoma multiforme (GBM) cancer cells. We found that SREBP transcriptional activity was induced by serum depletion both in normoxic and hypoxic cells and that activation of SREBP was required to maintain the expression of fatty acid and cholesterol metabolism genes under hypoxic conditions. Moreover, expression of stearoyl-CoA desaturase, the enzyme required for the generation of mono-unsaturated fatty acids, and fatty acid-binding protein 7, a regulator of glioma stem cell function, was strongly dependent on SREBP function. Inhibition of SREBP function blocked lipid biosynthesis in hypoxic cancer cells and impaired cell survival under hypoxia and in a three-dimensional spheroid model. Finally, gene expression analysis revealed that SREBP defines a gene signature that is associated with poor survival in glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Axelson H, Fredlund E, Ovenberger M, Landberg G, Pahlman S . Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 2005; 16: 554–563.

    Article  CAS  PubMed  Google Scholar 

  2. Favaro E, Lord S, Harris AL, Buffa FM . Gene expression and hypoxia in breast cancer. Genome Med 2011; 3: 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris AL . Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  4. Ward C, Langdon SP, Mullen P, Harris AL, Harrison DJ, Supuran CT et al. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 2013; 39: 171–179.

    Article  CAS  PubMed  Google Scholar 

  5. Gordon GB, Barcza MA, Bush ME . Lipid accumulation of hypoxic tissue culture cells. Am J Pathol 1977; 88: 663–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR . Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 1978; 253: 4305–4309.

    CAS  PubMed  Google Scholar 

  7. Belanger AJ, Luo Z, Vincent KA, Akita GY, Cheng SH, Gregory RJ et al. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor alpha/retinoid X receptor. Biochem Biophys Res Commun 2007; 364: 567–572.

    Article  CAS  PubMed  Google Scholar 

  8. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q et al. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 2009; 29: 4527–4538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics 2006; 25: 450–457.

    Article  CAS  PubMed  Google Scholar 

  10. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.

    Article  CAS  Google Scholar 

  11. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385–388.

    Article  CAS  Google Scholar 

  12. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 2011; 108: 19611–19616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bengoechea-Alonso MT, Ericsson J . SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 2007; 19: 215–222.

    Article  CAS  PubMed  Google Scholar 

  14. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171–183.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8: 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menendez JA, Lupu R . Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763–777.

    Article  CAS  PubMed  Google Scholar 

  17. Santos CR, Schulze A . Lipid metabolism in cancer. FEBS J 2012; 279: 2610–2623.

    Article  CAS  PubMed  Google Scholar 

  18. Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA et al. Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci USA 2010; 107: 15051–15056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krycer JR, Phan L, Brown AJ . A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem J 2012; 446: 191–201.

    Article  CAS  PubMed  Google Scholar 

  20. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148: 244–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2009; 2: ra82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D et al. An LXR agonist promotes GBM cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 2011; 1: 442–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Griffiths B, Lewis CA, Bensaad K, Ros S, Zhang X, Ferber EC et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumour growth. Cancer Metab 2013; 1: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hess D, Chisholm JW, Igal RA . Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 2010; 5: e11394.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res 2013; 73: 2850–2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Todd BL, Stewart EV, Burg JS, Hughes AL, Espenshade PJ . Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell Biol 2006; 26: 2817–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee CY, Stewart EV, Hughes BT, Espenshade PJ . Oxygen-dependent binding of Nro1 to the prolyl hydroxylase Ofd1 regulates SREBP degradation in yeast. EMBO J 2009; 28: 135–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo Y-Y et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 2008; 68: 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  29. Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M, Liu L et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev 2013; 27: 1115–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Espenshade PJ, Hughes AL . Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 2007; 41: 401–427.

    Article  CAS  PubMed  Google Scholar 

  31. Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 2011; 147: 840–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cagen LM, Deng X, Wilcox HG, Park EA, Raghow R, Elam MB . Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem J 2005; 385: 207–216.

    Article  CAS  PubMed  Google Scholar 

  33. Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M . Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 1996; 271: 26461–26464.

    Article  CAS  PubMed  Google Scholar 

  34. Discher DJ, Bishopric NH, Wu X, Peterson CA, Webster KA . Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element. J Biol Chem 1998; 273: 26087–26093.

    Article  CAS  PubMed  Google Scholar 

  35. Paton CM, Ntambi JM . Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 2009; 297: E28–E37.

    Article  CAS  PubMed  Google Scholar 

  36. Storch J, Thumser AE . Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem 2010; 285: 32679–32683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu RZ, Mita R, Beaulieu M, Gao Z, Godbout R . Fatty acid binding proteins in brain development and disease. Int J Dev Biol 2010; 54: 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  38. Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA 2005; 102: 5814–5819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ et al. HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 2012; 19: 284–294.

    Article  CAS  PubMed  Google Scholar 

  40. Liu RZ, Monckton EA, Godbout R . Regulation of the FABP7 gene by PAX6 in malignant glioma cells. Biochem Biophys Res Commun 2012; 422: 482–487.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A et al. Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer science 2009; 100: 821–827.

    Article  CAS  PubMed  Google Scholar 

  42. Casciari JJ, Sotirchos SV, Sutherland RM . Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol 1992; 151: 386–394.

    Article  CAS  PubMed  Google Scholar 

  43. Swietach P, Wigfield S, Cobden P, Supuran CT, Harris AL, Vaughan-Jones RD . Tumor-associated carbonic anhydrase 9 spatially coordinates intracellular pH in three-dimensional multicellular growths. J Biol Chem 2008; 283: 20473–20483.

    Article  CAS  PubMed  Google Scholar 

  44. Kamisuki S, Mao Q, Abu-Elheiga L, Gu Z, Kugimiya A, Kwon Y et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol 2009; 16: 882–892.

    Article  CAS  PubMed  Google Scholar 

  45. Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 2011; 13: 44–56.

    Article  CAS  PubMed  Google Scholar 

  46. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. TCGA. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  48. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr . Cellular fatty acid metabolism and cancer. Cell Metab 2013.

  49. Fritz V, Fajas L . Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 2010; 29: 4369–4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Swinnen JV, Brusselmans K, Verhoeven G . Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9: 358–365.

    Article  CAS  PubMed  Google Scholar 

  51. Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA 2013; 110: 8882–8887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laurenti G, Benedetti E, D'Angelo B, Cristiano L, Cinque B, Raysi S et al. Hypoxia induces peroxisome proliferator-activated receptor alpha (PPARalpha) and lipid metabolism peroxisomal enzymes in human glioblastoma cells. J Cell Biochem 2011; 112: 3891–3901.

    Article  CAS  PubMed  Google Scholar 

  53. Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM et al. Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 2014.

  54. Yang L, Lin C, Wang L, Guo H, Wang X . Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 2012; 318: 2417–2426.

    Article  CAS  PubMed  Google Scholar 

  55. Jung SY, Jeon HK, Choi JS, Kim YJ . Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. J Cell Biochem 2012; 113: 3730–3739.

    Article  CAS  PubMed  Google Scholar 

  56. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 2003; 100: 12027–12032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ntambi JM, Miyazaki M, Dobrzyn A . Regulation of stearoyl-CoA desaturase expression. Lipids 2004; 39: 1061–1065.

    Article  CAS  PubMed  Google Scholar 

  58. Mazzatti D, Lim FL, O'Hara A, Wood IS, Trayhurn P . A microarray analysis of the hypoxia-induced modulation of gene expression in human adipocytes. Arch Physiol Biochem 2012; 118: 112–120.

    Article  CAS  PubMed  Google Scholar 

  59. Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 2011; 71: 3236–3245.

    Article  CAS  PubMed  Google Scholar 

  60. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res 2011; 9: 1551–1561.

    Article  CAS  PubMed  Google Scholar 

  61. Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci USA 2009; 106: 12932–12937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schonfeld P, Wojtczak L . Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 2008; 45: 231–241.

    Article  PubMed  Google Scholar 

  63. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 2010; 70: 8117–8126.

    Article  CAS  PubMed  Google Scholar 

  64. Mita R, Beaulieu MJ, Field C, Godbout R . Brain fatty acid-binding protein and omega-3/omega-6 fatty acids: mechanistic insight into malignant glioma cell migration. J Biol Chem 2010; 285: 37005–37015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993; 75: 187–197.

    Article  CAS  PubMed  Google Scholar 

  66. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 2005; 65: 8679–8689.

    Article  CAS  PubMed  Google Scholar 

  67. Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 2003; 22: 4918–4923.

    Article  CAS  PubMed  Google Scholar 

  68. Therneau TM, Grambsch PM . Modeling Survival Data: Extending the Cox Model. Springer: New York, NY, USA, 2000, ISBN 0-387-98784-98783.

    Book  Google Scholar 

Download references

Acknowledgements

We thank the LRI Research Services for help with experiments and Charles Mein and Lia Di Faveri (Genome Center Bart’s and The London School of Medicine and Dentistry) for microarray analysis. We also thank Barbara Bauer (Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany) for histological analyses. This work was supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Schulze.

Ethics declarations

Competing interests

Dr Schulze has consulted for Merck KGaA and received compensation. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, C., Brault, C., Peck, B. et al. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene 34, 5128–5140 (2015). https://doi.org/10.1038/onc.2014.439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.439

This article is cited by

Search

Quick links