Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Topoisomerase IIα in chromosome instability and personalized cancer therapy

Subjects

Abstract

Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may have a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors has been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme’s expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  3. Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR . Defining ‘chromosomal instability’. Trends Genet 2008; 24: 64–69.

    CAS  PubMed  Google Scholar 

  4. Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA . Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 2005; 15: 43–49.

    CAS  PubMed  Google Scholar 

  5. Chen J, Fu L, Zhang LY, Kwong DL, Yan L, Guan XY . Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin J Cancer 2012; 31: 215–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kops GJ, Weaver BA, Cleveland DW . On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005; 5: 773–785.

    CAS  PubMed  Google Scholar 

  7. Duijf PH, Benezra R . The cancer biology of whole-chromosome instability. Oncogene 2013; 32: 4727–4736.

    CAS  PubMed  Google Scholar 

  8. Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K et al. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol 2012; 30: 2256–2264.

    PubMed  Google Scholar 

  9. Wang X . Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling. Chin J Cancer 2013; 32: 155–161.

    PubMed  PubMed Central  Google Scholar 

  10. Parker BC, Zhang W . Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin J Cancer 2013; 32: 594–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Duesberg P, Li R . Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle 2003; 2: 202–210.

    CAS  PubMed  Google Scholar 

  12. Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 2008; 105: 3443–3448.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Peters JM . The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 2002; 9: 931–943.

    CAS  PubMed  Google Scholar 

  14. Champoux JJ . DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 2001; 70: 369–413.

    CAS  PubMed  Google Scholar 

  15. Wang JC . Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002; 3: 430–440.

    CAS  PubMed  Google Scholar 

  16. Sumner AT . Inhibitors of topoisomerase II delay progress through mitosis and induce doubling of the DNA content in CHO cells. Exp Cell Res 1995; 217: 440–447.

    CAS  PubMed  Google Scholar 

  17. Chen M, Beck WT . Teniposide-resistant CEM cells, which express mutant DNA topoisomerase II, when treated with non-complex-stabilizing inhibitors of the enzyme, display no cross-resistance and reveal aberrant functions of the mutant enzyme. Cancer Res 1993; 53: 5946–5953.

    CAS  PubMed  Google Scholar 

  18. Cummings J, Sumner AT, Slavotinek A, Meikle I, Macpherson JS, Smyth JF . Cytogenetic evaluation of the mechanism of cell death induced by the novel anthracenylamino acid topoisomerase II catalytic inhibitor NU/ICRF 500. Mutat Res 1995; 344: 55–62.

    CAS  PubMed  Google Scholar 

  19. Sumner AT . Induction of diplochromosomes in mammalian cells by inhibitors of topoisomerase II. Chromosoma 1998; 107: 486–490.

    CAS  PubMed  Google Scholar 

  20. Ferguson LR, Whiteside G, Holdaway KM, Baguley BC . Application of fluorescence in situ hybridization to study the relationship between cytotoxicity, chromosome aberration, and changes in chromosome number after treatment with the topoisomerase II inhibitor amsacrine. Environ Mol Mutagen 1998; 27: 255–262.

    Google Scholar 

  21. Kallio M, Lahdetie J . Effects of DNA topoisomerase inhibitor merbarone in male mouse meiotic divisions in vivo: cell cycle arrest and induction of aneuploidy. Environ Mol Mutagen 1997; 29: 16–27.

    CAS  PubMed  Google Scholar 

  22. Holm C . Coming undone: how to untangle a chromosome. Cell 1994; 77: 955–957.

    CAS  PubMed  Google Scholar 

  23. Deming PB, Cistulli CA, Zhao H, Graves PR, Piwnica-Worms H, Paules RS et al. The human decatenation checkpoint. Proc Natl Acad Sci USA 2001; 98: 12044–12049.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Downes CS, Clarke DJ, Mullinger AM, Giménez-Abián JF, Creighton AM, Johnson RT . A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 1994; 372: 467–470.

    CAS  PubMed  Google Scholar 

  25. Paulovich AG, Toczyski DP, Hartwell LH . When checkpoints fail. Cell 1997; 88: 315–321.

    CAS  PubMed  Google Scholar 

  26. Schmidt BH, Burgin AB, Deweese JE, Osheroff N, Berger JM . A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 2010; 465: 641–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt BH, Osheroff N, Berger JM . Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol 2012; 19: 1147–1154.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wendorff TJ, Schmidt BH, Heslop P, Austin CA, Berger JM . The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J Mol Biol 2012; 424: 109–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Villman K, Stahl E, Liljegren G, Tidefelt U, Karlsson MG . Topoisomerase II-alpha expression in different cell cycle phases in fresh human breast carcinomas. Mod Pathol 2002; 15: 486–491.

    PubMed  Google Scholar 

  30. Cortes F, Pastor N, Mateos S, Dominguez I . Roles of DNA topoisomerases in chromosome segregation and mitosis. Mutat Res 2003; 543: 59–66.

    CAS  PubMed  Google Scholar 

  31. Yanagida M . Basic mechanism of eukaryotic chromosome segregation. Philos Trans R Soc Lond B Biol Sci 2005; 360: 609–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang LH, Schwarzbraun T, Speicher MR, Nigg EA . Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma 2008; 117: 123–135.

    PubMed  Google Scholar 

  33. Roca J, Ishida R, Berger JM, Andoh T, Wang JC . Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci USA 1994; 91: 1781–1785.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Andoh T, Sato M, Narita T, Ishida R . Role of DNA topoisomerase II in chromosome dynamics in mammalian cells. Biotechnol Appl Biochem 1993; 18: 165–174.

    CAS  PubMed  Google Scholar 

  35. Ishida R, Sato M, Narita T, Utsumi KR, Nishimoto T, Morita T et al. Inhibition of DNA topoisomerase II by ICRF-193 induces polyploidization by uncoupling chromosome dynamics from other cell cycle events. J Cell Biol 1994; 126: 1341–1351.

    CAS  PubMed  Google Scholar 

  36. Ishida R, Miki T, Narita T, Yui R, Sato M, Utsumi KR et al. Inhibition of intracellular topoisomerase II by antitumor bis(2,6-dioxopiperazine) derivatives: mode of cell growth inhibition distinct from that of cleavable complex-forming type inhibitors. Cancer Res 1991; 51: 4909–4916.

    CAS  PubMed  Google Scholar 

  37. Hasinoff BB, Abram ME, Barnabé N, Khélifa T, Allan WP, Yalowich JC . The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Mol Pharmacol 2001; 59: 453–461.

    CAS  PubMed  Google Scholar 

  38. Akimitsu N, Adachi N, Hirai H, Hossain MS, Hamamoto H, Kobayashi M et al. Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIαlpha. Genes Cells 2003; 8: 393–402.

    CAS  PubMed  Google Scholar 

  39. Akimitsu N, Adachi N, Hirai H, Hossain MS, Hamamoto H, Kobayashi M et al. DNA topoisomerase IIbeta and neural development. Science 2000; 287: 131–134.

    Google Scholar 

  40. Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M . DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. Pombe. Cell 1987; 50: 817–925.

    Google Scholar 

  41. Clarke DJ, Johnson RT, Downes CS . Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks. J Cell Sci 1993; 105: 563–568.

    CAS  PubMed  Google Scholar 

  42. Carpenter AJ, Porter AC . Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIα mutant human cell line. Mol Biol Cell 2004; 15: 5700–5711.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson M, Phua HH, Bennett SC, Spence JM, Farr CJ . Studying vertebrate topoisomerase 2 function using a conditional knockdown system in DT40 cells. Nucleic Acids Res 2009; 37: e98.

    PubMed  PubMed Central  Google Scholar 

  44. Chang CJ, Goulding S, Earnshaw WC, Carmena M . RNAi analysis reveals an unexpected role for topoisomerase II in chromosome arm congression to a metaphase plate. J Cell Sci 2003; 116: 4715–4726.

    CAS  PubMed  Google Scholar 

  45. Sandri MI, Isaacs RJ, Ongkeko WM, Harris AL, Hickson ID, Broggini M et al. p53 regulates the minimal promoter of the human topoisomerase IIalpha gene. Nucleic Acids Res 1996; 24: 4464–4470.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Q, Zambetti GP, Suttle DP . Inhibition of DNA topoisomerase IIalpha gene expression by the p53 tumor suppressor. Mol Cell Biol 1997; 17: 389–397.

    PubMed  PubMed Central  Google Scholar 

  47. Liu D, Huang CL, Kameyama K, Hayashi E, Yamauchi A, Sumitomo S et al. Topoisomerase IIalpha gene expression is regulated by the p53 tumor suppressor gene in nonsmall cell lung carcinoma patients. Cancer 2002; 94: 2239–2247.

    CAS  PubMed  Google Scholar 

  48. Wang H, Jiang ZG, Wong YW, Dalton WS, Futscher BW, Chan VT . Decreased CP-1 (NF-Y) activity results in transcriptional down-regulation of topoisomerase IIalpha in a doxorubicin-resistant variant of human multiple myeloma RPMI 8226. Biochem Biophys Res Commun 1997; 237: 217–224.

    CAS  PubMed  Google Scholar 

  49. Belluti S, Basile V, Benatti P, Ferrari E, Marverti G, Imbriano C . Concurrent inhibition of enzymatic activity and NF-Y-mediated transcription of Topoisomerase-IIα by bis-DemethoxyCurcumin in cancer cells. Cell Death Dis 2013; 4: e756.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stros M, Polanská E, Struncová S, Pospísilová S . HMGB1 and HMGB2 proteins upregulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res 2009; 37: 2070–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Williams AO, Isaacs RJ, Stowell KM . Down-regulation of human topoisomerase IIalpha expression correlates with relative amounts of specificity factors Sp1 and Sp3 bound at proximal and distal promoter regions. BMC Mol Biol 2007; 8: 36.

    PubMed  PubMed Central  Google Scholar 

  52. Mo YY, Wang Q, Beck WT . Down-regulation of topoisomerase IIalpha in CEM cells selected for merbarone resistance is associated with reduced expression of Sp3. Cancer Res 1997; 57: 5004–5008.

    CAS  PubMed  Google Scholar 

  53. Watt PM, Hickson ID . Structure and function of type II DNA topoisomerases. Biochem J 1994; 303: 681–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishida R, Iwai M, Marsh KL, Austin CA, Yano T, Shibata M et al. Threonine 1342 in human topoisomerase IIαlpha is phosphorylated throughout the cell cycle. J Biol Chem 1996; 271: 30077–30082.

    CAS  PubMed  Google Scholar 

  55. Daum JR, Gorbsky GJ . Casein kinase II catalyzes a mitotic phosphorylation on threonine 1342 of human DNA topoisomerase IIαlpha, which is recognized by the 3F3/2 phosphoepitope antibody. J Biol Chem 1998; 273: 30622–30629.

    CAS  PubMed  Google Scholar 

  56. Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK . Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem 2000; 275: 34710–34718.

    CAS  PubMed  Google Scholar 

  57. Redwood C, Davies SL, Wells NJ, Fry AM, Hickson ID . Casein kinase II stabilizes the activity of human topoisomerase II α in a phosphorylation-independent manner. J Biol Chem 1998; 273: 3635–3642.

    CAS  PubMed  Google Scholar 

  58. Luo K, Yuan J, Chen J, Lou Z . Topoisomerase IIαlpha controls the decatenation checkpoint. Nat Cell Biol 2009; 11: 204–210.

    CAS  PubMed  Google Scholar 

  59. Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH et al. Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. J Biol Chem 2003; 278: 12696–12702.

    CAS  PubMed  Google Scholar 

  60. Sahyoun N, Wolf M, Besterman J, Hsieh T, Sander M, LeVine H 3rd et al. Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells. Proc Natl Acad Sci USA 1986; 83: 1603–1607.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shapiro PS, Whalen AM, Tolwinski NS, Wilsbacher J, Froelich-Ammon SJ, Garcia M et al. Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol 1999; 19: 3551–3560.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi X, Hou S, Lepp A, Li R, Basir Z, Lou Z, Chen G . Phosphorylation and stabilization of topoisomerase IIα protein by p38γ mitogen-activated protein kinase sensitize breast cancer cells to its poisons. J Biol Chem 2011; 286: 35883–35890.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li H, Wang Y, Liu X . Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem 2008; 283: 6209–6221.

    CAS  PubMed  Google Scholar 

  64. Iida M, Matsuda M, Komatani H . Plk3 phosphorylates topoisomerase IIalpha at Thr(1342), a site that is not recognized by Plk1. Biochem J 2008; 411: 27–32.

    CAS  PubMed  Google Scholar 

  65. Ganapathi RN, Ganapathi MK . Mechanisms regulating resistance to inhibitors of topoisomerase II. Front Pharmacol 2013; 4: 89.

    PubMed  PubMed Central  Google Scholar 

  66. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011; 306: 1557–1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 2001; 28: 266–271.

    CAS  PubMed  Google Scholar 

  68. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999; 22: 37–43.

    CAS  PubMed  Google Scholar 

  69. Lou Z, Minter-Dykhouse K, Chen J . BRCA1 participates in DNA decatenation. Nat Struct Mol Biol 2005; 12: 589–593.

    CAS  PubMed  Google Scholar 

  70. Wang RH, Yu H, Deng CX . A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci USA 2004; 101: 17108–17113.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shinagawa H, Miki Y, Yoshida K . BRCA1-mediated ubiquitination inhibits topoisomerase II alpha activity in response to oxidative stress. Antioxid Redox Signal 2008; 10: 939–949.

    CAS  PubMed  Google Scholar 

  72. Gilmore PM, Quinn JE, Mullan PB, Andrews HN, McCabe N, Carty M et al. Role played by BRCA1 in regulating the cellular response to stress. Biochem Soc Trans 2003; 31: 257–262.

    CAS  PubMed  Google Scholar 

  73. Azuma Y, Arnaoutov A, Dasso M . SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 2003; 163: 477–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Diaz-Martinez LA, Gimenez-Abian JF, Azuma Y, Guacci V, Gimenez-Martin G, Lanier LM et al. PIASgamma is required for faithful chromosome segregation in human cells. PloS One 2006; 1: e53.

    PubMed  PubMed Central  Google Scholar 

  75. Obado SO, Bot C, Echeverry MC, Bayona JC, Alvarez VE, Taylor MC et al. Centromere-associated topoisomerase activity in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2011; 39: 1023–1033.

    CAS  PubMed  Google Scholar 

  76. Azuma Y . Analysis of SUMOylation of topoisomerase IIalpha with Xenopus egg extracts. Methods Mol Biol 2009; 582: 221–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Azuma Y, Arnaoutov A, Anan T, Dasso M . PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J 2005; 24: 2172–2182.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Takahashi Y, Yong-Gonzalez V, Kikuchi Y, Strunnikov A . SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics 2006; 172: 783–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Díaz-Martínez LA, Giménez-Abián JF, Azuma Y, Guacci V, Giménez-Martín G, Lanier LM et al. PIASgamma is required for faithful chromosome segregation in human cells. PLoS One 2006; 1: e53.

    PubMed  PubMed Central  Google Scholar 

  80. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S et al. Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIαlpha. Cell 2008; 133: 103–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E . Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 2000; 26: 349–353.

    CAS  PubMed  Google Scholar 

  82. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB . Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 1997; 388: 598–602.

    CAS  PubMed  Google Scholar 

  83. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 2013; 497: 624–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Meng H, Chen R, Li W, Xu L, Xu L . Correlations of TOP2A gene aberrations and expression of topoisomerase IIα protein and TOP2A mRNA expression in primary breast cancer: a retrospective study of 86 cases using fluorescence in situ hybridization and immunohistochemistry. Pathol Int 2012; 62: 391–399.

    CAS  PubMed  Google Scholar 

  85. Faggad A, Darb-Esfahani S, Wirtz R, Sinn B, Sehouli J, Könsgen D et al. Topoisomerase IIalpha mRNA and protein expression in ovarian carcinoma: correlation with clinicopathological factors and prognosis. Mod Pathol 2009; 22: 579–588.

    CAS  PubMed  Google Scholar 

  86. Depowski PL, Rosenthal SI, Brien TP, Stylos S, Johnson RL, Ross JS . Topoisomerase IIalpha expression in breast cancer: correlation with outcome variables. Mod Pathol 2000; 13: 542–547.

    CAS  PubMed  Google Scholar 

  87. Mueller RE, Parkes RK, Andrulis I, O'Malley FP . Amplification of the TOP2A gene does not predict high levels of topoisomerase II alpha protein in human breast tumor samples. Genes Chromosomes Cancer 2004; 39: 288–297.

    CAS  PubMed  Google Scholar 

  88. Washiro M, Ohtsuka M, Kimura F, Shimizu H, Yoshidome H, Sugimoto T et al. Upregulation of topoisomerase IIalpha expression in advanced gallbladder carcinoma: a potential chemotherapeutic target. J Cancer Res Clin Oncol 2008; 134: 793–801.

    CAS  PubMed  Google Scholar 

  89. Lan J, Huang HY, Lee SW, Chen TJ, Tai HC, Hsu HP et al. TOP2A overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma. Tumour Biol 2014; 35: 179–187.

    CAS  PubMed  Google Scholar 

  90. Bhargava R, Lal P, Chen B . HER-2/neu and topoisomerase IIa gene amplification and protein expression in invasive breast carcinomas: chromogenic in situ hybridization and immunohistochemical analyses. Am J Clin Pathol 2005; 123: 889–895.

    CAS  PubMed  Google Scholar 

  91. Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT . Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 1995; 9: 444–450.

    CAS  PubMed  Google Scholar 

  92. Lee WY, Jin YT, Chang TW, Lin PW, Su IJ . Immunolocalization of BRCA1 protein in normal breast tissue and sporadic invasive ductal carcinomas: a correlation with other biological parameters. Histopathology 1999; 34: 106–112.

    CAS  PubMed  Google Scholar 

  93. Seery LT, Knowlden JM, Gee JM, Robertson JF, Kenny FS, Ellis IO et al. BRCA1 expression levels predict distant metastasis of sporadic breast cancers. Int J Cancer 1999; 84: 258–262.

    CAS  PubMed  Google Scholar 

  94. Dorairaj JJ, Salzman DW, Wall D, Rounds T, Preskill C, Sullivan CA et al. A germline mutation in the BRCA1 3'UTR predicts Stage IV breast cancer. BMC Cancer 2014; 14: 421.

    PubMed  PubMed Central  Google Scholar 

  95. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003; 72: 1117–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lynch HT, Deters CA, Snyder CL, Lynch JF, Villeneuve P, Silberstein J et al. BRCA1 and pancreatic cancer: pedigree findings and their causal relationships. Cancer Genet Cytogenet 2005; 158: 119–125.

    CAS  PubMed  Google Scholar 

  97. Gunduz E, Gunduz M, Nagatsuka H, Beder L, Demircan K, Tamamura R et al. Epigenetic alterations of BRG1 leads to cancer development through its nuclear-cytoplasmic shuttling abnormalities. Med Hypotheses 2006; 67: 1313–1316.

    CAS  PubMed  Google Scholar 

  98. Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 2008; 29: 617–622.

    CAS  PubMed  Google Scholar 

  99. Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 2003; 63: 560–566.

    CAS  PubMed  Google Scholar 

  100. Glaros S, Cirrincione GM, Palanca A, Metzger D, Reisman D . Targeted knockout of BRG1 potentiates lung cancer development. Cancer Res 2008; 68: 3689–3696.

    CAS  PubMed  Google Scholar 

  101. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M et al. Convergent structural alterations define Switch/sucrose nonfermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA 2012; 109: E252–E259.

    CAS  PubMed  Google Scholar 

  102. Dal Molin M, Hong SM, Hebbar S, Sharma R, Scrimieri F, de Wilde RF et al. Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol 2012; 43: 585–591.

    CAS  PubMed  Google Scholar 

  103. Li Y, Xiong H, Yang DQ . Functional switching of ATM: sensor of DNA damage in proliferating cells and mediator of Akt survival signal in post-mitotic human neuron-like cells. Chin J Cancer 2012; 31: 364–372.

    PubMed  PubMed Central  Google Scholar 

  104. Bower JJ, Karaca GF, Zhou Y, Simpson DA, Cordeiro-Stone M, Kaufmann WK . Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene 2010; 29: 4787–4799.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hande KR . Topoisomerase II inhibitors. Update Cancer Ther 2008; 3: 13–26.

    Google Scholar 

  106. Nitiss JL . Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009; 9: 338–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen M, Beck WT . DNA topoisomerase II expression, stability, and phosphorylation in two VM-26-resistant human leukemic CEM sublines. Oncol Res 1995; 7: 103–111.

    CAS  PubMed  Google Scholar 

  108. Ritke MK, Murray NR, Allan WP, Fields AP, Yalowich JC . Hypophosphorylation of topoisomerase II in etoposide (VP-16)-resistant human leukemia K562 cells associated with reduced levels of beta II protein kinase C. Mol Pharmacol 1995; 48: 798–805.

    CAS  PubMed  Google Scholar 

  109. Kolb RH, Greer PM, Cao PT, Cowan KH, Yan Y . ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation. PLoS One 2012; 7: e50281.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S et al. BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. Cancer Res 2005; 65: 10265–10272.

    CAS  PubMed  Google Scholar 

  111. Pedersen-Bjergaard J, Daugaard G, Hansen SW, Philip P, Larsen SO, Rorth M . Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet 1991; 338: 359–363.

    CAS  PubMed  Google Scholar 

  112. de Voer RM, Geurts van Kessel A, Weren RD, Ligtenberg MJ, Smeets D, Fu L et al. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are risk factors for colorectal cancer. Gastroenterology 2013; 145: 544–547.

    CAS  PubMed  Google Scholar 

  113. Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR, Peters JM et al. Securin is required for chromosomal stability in human cells. Cell 2001; 105: 445–457.

    CAS  PubMed  Google Scholar 

  114. Tang Z, Shu H, Oncel D, Chen S, Yu H . Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell 2004; 16: 387–397.

    CAS  PubMed  Google Scholar 

  115. Jeganathan K, Malureanu L, Baker DJ, Abraham SC, van Deursen JM . Bub1 mediates cell death in response to chromosome mis-segregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 2007; 179: 255–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 2004; 36: 744–749.

    CAS  PubMed  Google Scholar 

  117. Taylor SS, Ha E, McKeon F . The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 1998; 142: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen RH, Shevchenko A, Mann M, Murray AW . Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol 1998; 143: 283–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fang G, Yu H, Kirschner MW . The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 1998; 12: 1871–1883.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Luo X, Fang G, Coldiron M, Lin Y, Yu H, Kirschner MW et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol 2000; 7: 224–229.

    CAS  PubMed  Google Scholar 

  121. Weaver BA, Bonday ZQ, Putkey FR, Kops GJ, Silk AD, Cleveland DW . Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 2003; 162: 551–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Habu T, Kim SH, Weinstein J, Matsumoto T . Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J 2002; 21: 6419–6428.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Xia G, Luo X, Habu T, Rizo J, Matsumoto T, Yu H . Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J 2004; 23: 3133–3143.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. London N, Biggins S . Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev 2014; 28: 140–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tipton AR, Ji W, Sturt-Gillespie B, Bekier ME 2nd, Wang K, Taylor WR et al. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex. J Biol Chem 2013; 288: 35149–35158.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I, Yates JR 3rd et al. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 2005; 169: 49–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lin YT, Chen Y, Wu G, Lee WH . Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control. Oncogene 2006; 25: 6901–6914.

    CAS  PubMed  Google Scholar 

  128. Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE . Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 2005; 15: 856–861.

    CAS  PubMed  Google Scholar 

  129. Williams BC, Li Z, Liu S, Williams EV, Leung G, Yen TJ et al. Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Mol Biol Cell 2003; 14: 1379–1391.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wirth KG, Wutz G, Kudo NR, Desdouets C, Zetterberg A, Taghybeeglu S et al. Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression. J Cell Biol 2006; 172: 847–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ricke RM, van Ree JH, van Deursen JM . Whole chromosome instability and cancer: a complex relationship. Trends Genet 2008; 24: 457–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sudakin V, Chan GK, Yen TJ . Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154: 925–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Nilsson J, Yekezare M, Minshull J, Pines J . The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 2008; 10: 1411–1420.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jeganathan KB, Baker DJ, van Deursen JM . Securin associates with APC (Cdh1) in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle 2006; 5: 366–370.

    CAS  PubMed  Google Scholar 

  135. García-Higuera I, Manchado E, Dubus P, Cañamero M, Méndez J, Moreno S et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008; 10: 802–811.

    PubMed  Google Scholar 

  136. Coelho PA, Queiroz-Machado J, Carmo AM, Moutinho-Pereira S, Maiato H, Sunkel CE . Dual role of topoisomerase II in centromere resolution and aurora B activity. PloS Biol 2008; 6: e207.

    PubMed  PubMed Central  Google Scholar 

  137. Privette LM, Weier JF, Nguyen HN, Yu X, Petty EM . Loss of CHFR in human mammary epithelial cells causes genomic instability by disrupting the mitotic spindle assembly checkpoint. Neoplasia 2008; 10: 643–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Giménez-Abián JF, Sumara I, Hirota T, Hauf S, Gerlich D, de la Torre C et al. Regulation of sister chromatid cohesion between chromosome arms. Curr Biol 2004; 14: 1187–1193.

    PubMed  Google Scholar 

  139. Huang B, Shang ZF, Li B, Wang Y, Liu XD, Zhang SM et al. The catalytic subunit of DNA-dependent protein kinase associates with PLK1 and is involved in proper chromosome segregation and regulation of the cytokinesis. J Cell Biochem 2014; 115: 1077–1088.

    CAS  PubMed  Google Scholar 

  140. Liu H, Jia L, Yu H . Phospho-H2A and cohesin specify distinct tension-regulated Sgo1 pools at kinetochores and inner centromeres. Curr Biol 2013; 23: 1927–1933.

    CAS  PubMed  Google Scholar 

  141. Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M . Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 2000; 10: 1172–1181.

    CAS  PubMed  Google Scholar 

  142. Adams RR, Maiato H, Earnshaw WC, Carmena M . Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 2001; 153: 865–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee BH, Amon A . Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 2003; 300: 482–486.

    CAS  PubMed  Google Scholar 

  144. Kallio MJ, Nieminen M, Eriksson JE . Human inhibitor of apoptosis protein (IAP) survivin participates in regulation of chromosome segregation and mitotic exit. FASEB J 2001; 15: 2721–2723.

    CAS  PubMed  Google Scholar 

  145. Maney T, Hunter AW, Wagenbach M, Wordeman L . Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 1998; 142: 787–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Prasanth SG, Prasanth KV, Stillman B . Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 2002; 297: 1026–1031.

    CAS  PubMed  Google Scholar 

  147. Ji P, Smith SM, Wang Y, Jiang R, Song SW, Li B et al. Inhibition of gliomagenesis and attenuation of mitotic transition by MIIP. Oncogene 2010; 29: 3501–3508.

    CAS  PubMed  Google Scholar 

  148. Bhat UG, Raychaudhuri P, Beck WT . Functional interaction between human topoisomerase IIalpha and retinoblastoma protein. Proc Natl Acad Sci USA 1999; 96: 7859–7864.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sherr CJ, McCormick F . The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

    CAS  PubMed  Google Scholar 

  150. Yamasaki L . Role of the RB tumor suppressor in cancer. Cancer Treat Res 2003; 115: 209–239.

    CAS  PubMed  Google Scholar 

  151. Muller PA, Vousden KH . p53 mutations in cancer. Nat Cell Biol 2013; 15: 2–8.

    CAS  PubMed  Google Scholar 

  152. Li L, Davie JR . The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192: 275–283.

    CAS  PubMed  Google Scholar 

  153. Lin WC, Yan MD, Yu PN, Li HJ, Kuo CC, Hsu CL et al. The role of Sp1 and EZH2 in the regulation of LMX1A in cervical cancer cells. Biochim Biophys Acta 2013; 1833: 3206–3217.

    CAS  PubMed  Google Scholar 

  154. Kang R, Zhang Q, Zeh HJ 3rd, Lotze MT, Tang D . HMGB1 in cancer: good, bad, or both? Clin Cancer Res 2013; 19: 4046–4057.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen J, Xi B, Zhao Y, Yu Y, Zhang J, Wang C . High-mobility group protein B1 (HMGB1) is a novel biomarker for human ovarian cancer. Gynecol Oncol 2012; 126: 109–117.

    CAS  PubMed  Google Scholar 

  156. Yang GL, Zhang LH, Bo JJ, Huo XJ, Chen HG, Cao M et al. Increased expression of HMGB1 is associated with poor prognosis in human bladder cancer. J Surg Oncol 2012; 106: 57–61.

    CAS  PubMed  Google Scholar 

  157. Liu Y, Xie C, Zhang X, Huang D, Zhou X, Tan P et al. Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer 2010; 46: 3007–3015.

    CAS  PubMed  Google Scholar 

  158. Wu D, Ding Y, Wang S, Zhang Q, Liu L . Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol 2008; 216: 167–175.

    CAS  PubMed  Google Scholar 

  159. Eckerdt F, Yuan J, Strebhardt K . Polo-like kinases and oncogenesis. Oncogene 2005; 24: 267–276.

    CAS  PubMed  Google Scholar 

  160. Koivunen J, Aaltonen V, Peltonen J . Protein kinase C (PKC) family in cancer progression. Cancer Lett 2006; 235: 1–10.

    CAS  PubMed  Google Scholar 

  161. Qi X, Tang J, Loesch M, Pohl N, Alkan S, Chen G . p38gamma mitogen-activated protein kinase integrates signaling crosstalk between Ras and estrogen receptor to increase breast cancer invasion. Cancer Res 2006; 66: 7540–7547.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Bordeleau L, Panchal S, Goodwin P . Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat 2010; 119: 13–24.

    CAS  PubMed  Google Scholar 

  163. Patel AN, Goyal S, Wu H, Schiff D, Moran MS, Haffty BG . Mediator of DNA damage checkpoint protein 1 (MDC1) expression as a prognostic marker for nodal recurrence in early-stage breast cancer patients treated with breast-conserving surgery and radiation therapy. Breast Cancer Res Treat 2011; 126: 601–607.

    CAS  PubMed  Google Scholar 

  164. Yuan C, Bu Y, Wang C, Yi F, Yang Z, Huang X et al. NFBD1/MDC1 is a protein of oncogenic potential in human cervical cancer. Mol Cell Biochem 2012; 359: 333–346.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Ann Sutton in the Department of Scientific Publications for editing this manuscript. This work was partially supported by MD Anderson’s National Cancer Institute core grant (CA16672), a Sister Institute Network Fund and a grant from the National Foundation for Cancer Research. Dr Tao Chen was supported by a Fellowship from the China Education Council. Dr Y Sun was supported by The A Lavoy Moore Endowment Fund, a grant from the Tianjin Municipal Science and Technology Commission (14JCYBJC27500), and a grant from NSFC (81472263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Sun, Y., Ji, P. et al. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 34, 4019–4031 (2015). https://doi.org/10.1038/onc.2014.332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.332

This article is cited by

Search

Quick links