Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prohibitin is required for transcriptional repression by the WT1–BASP1 complex

Abstract

The Wilms’ tumor-1 protein (WT1) is a transcriptional regulator that can either activate or repress genes controlling cell growth, apoptosis and differentiation. The transcriptional corepressor BASP1 interacts with WT1 and mediates WT1’s transcriptional repression activity. BASP1 is contained within large complexes, suggesting that it works in concert with other factors. Here we report that the transcriptional repressor prohibitin is part of the WT1–BASP1 transcriptional repression complex. Prohibitin interacts with BASP1, colocalizes with BASP1 in the nucleus, and is recruited to the promoter region of WT1 target genes to elicit BASP1-dependent transcriptional repression. We demonstrate that prohibitin and BASP1 cooperate to recruit the chromatin remodeling factor BRG1 to WT1-responsive promoters and that this results in the dissociation of CBP from the promoter region of WT1 target genes. As seen with BASP1, prohibitin can associate with phospholipids. We demonstrate that the recruitment of PIP2 and HDAC1 to WT1 target genes is also dependent on the concerted activity of BASP1 and prohibitin. Our findings provide new insights into the function of prohibitin in transcriptional regulation and uncover a BASP1–prohibitin complex that plays an essential role in the PIP2-dependent recruitment of chromatin remodeling activities to the promoter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rivera MN, Haber DA . Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 2005; 5: 699–712.

    Article  CAS  Google Scholar 

  2. Hohenstein P, Hastie ND . The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet 2006; 15 (Spec No 2): R196–R201.

    Article  CAS  Google Scholar 

  3. Huff V . Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 2011; 11: 111–121.

    Article  CAS  Google Scholar 

  4. Roberts SGE . Transcriptional regulation by WT1 in development. Curr Opin Genet Dev 2005; 15: 542–547.

    Article  CAS  Google Scholar 

  5. McKay LM, Carpenter B . Roberts SGE. Regulation of the Wilms’ tumour suppressor protein transcriptional activator domain. Oncogene 1999; 18: 6546–6554.

    Article  CAS  Google Scholar 

  6. Carpenter B, Hill KJ, Charalambous M, Wagner KJ, Lahiri D, James DI et al. BASP1 is a transcriptional cosuppressor for the Wilms’ tumor suppressor protein WT1. Mol Cell Biol 2004; 24: 537–549.

    Article  CAS  Google Scholar 

  7. Mosevitsky MI . Nerve ending ‘signal’ proteins GAP-43, MARCKS and BASP1. Int Rev Cytol 2005; 245: 245–325.

    Article  CAS  Google Scholar 

  8. Green LM, Wagner KJ, Campbell HA, Addison K . Roberts SGE. Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation. Nucleic Acids Res 2009; 37: 431–440.

    Article  CAS  Google Scholar 

  9. Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L et al. A Wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell 2011; 21: 559–574.

    Article  CAS  Google Scholar 

  10. Goodfellow SJ, Rebello MR, Toska E, Zeef LA, Rudd SG, Medler KF et al. WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line. Biochem J 2011; 435: 113–125.

    Article  CAS  Google Scholar 

  11. Toska E, Campbell HA, Shandilya J, Goodfellow SJ, Shore P, Medler KF et al. Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Reports 2012; 2: 462–469.

    Article  CAS  Google Scholar 

  12. Hartl M, Nist A, Khan MI, Valovka T, Bister K . inhibition of Myc-induced cell transformation by brain acid-soluble protein 1 (BASP1). Proc Natl Acad Sci USA 2009; 106: 5604–5609.

    Article  CAS  Google Scholar 

  13. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expressing profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  Google Scholar 

  14. Moribe T, Lizuka N, Miura T, Stark M, Tamatsukuri S, Ishitsuka H et al. Identification of novel aberrant methylation of BASP1 and SRD5A2 for early diagnosis of hepatocellular carcinoma by genome-wide search. Int J Oncol 2008; 33: 949–958.

    CAS  PubMed  Google Scholar 

  15. Wang S, Nath N, Adlam M, Chellappan S . Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 1999; 18: 3501–3510.

    Article  CAS  Google Scholar 

  16. Wang S, Nath N, Fusaro G, Chellappan S . Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 1999; 19: 7447–7460.

    Article  CAS  Google Scholar 

  17. Wang S, Zhang B, Faller DV . Prohibitin requires Brg-1 and Brm for the repression of E2F and cell growth. EMBO J 2002; 21: 3019–3028.

    Article  CAS  Google Scholar 

  18. Joshi B, Ko D, Ordonez-Ercan D, Chellappan SP . A putative coiled-coil domain of prohibitin is sufficient to repress E2F1-mediated transcriptional and induce apoptosis. Biochem Biophys Res Commun 2003; 312: 459–466.

    Article  CAS  Google Scholar 

  19. Choi D, Lee SJ, Hong S, Kim IH, Kang S . Prohibitin interacts with RNF2 and regulates E2F1 function via dual pathways. Oncogene 2008; 27: 1716–1725.

    Article  CAS  Google Scholar 

  20. Schneider M, Schambony A, Wedlich D . Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1. Development 2010; 137: 4073–4081.

    Article  CAS  Google Scholar 

  21. Wang S, Fusaro G, Padmanabhan J, Chellappan SP . Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 2002; 21: 8388–8396.

    Article  CAS  Google Scholar 

  22. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS . An estrogen receptor-selective coregulator that potentiates the effectiveness of aniestrogenes and represses the activity of estrogens. Proc Natl Acad Sci USA 1999; 96: 6947–6952.

    Article  CAS  Google Scholar 

  23. Delage-Mourroux R, Martini PG, Choi I, Kraichely DM, Hoeksema J, Katzenellenbogen BS . Analysis of estrogen receptor interaction with a repressor of estrogen receptor activity (REA) and the regulation of estrogen receptor transcriptional activity by REA. J Biol Chem 2000; 275: 35848–35856.

    Article  CAS  Google Scholar 

  24. He B, Feng Q, Mukherjee A, Lonard DM, DeMayo FJ, Katzenellenbogen BS et al. A repressive role for prohibitin in estrogen signaling. Mol Endocrinol 2008; 22: 344–360.

    Article  CAS  Google Scholar 

  25. Gamble SC, Chotai D, Odontiadis M, Dart DA, Brooke GN, Powell SM et al. Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 2007; 26: 1757–1768.

    Article  CAS  Google Scholar 

  26. Dai Y, Ngo D, Jacob J, Forman LW, Faller DV . Prohibitin and the SW1/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor regulated genes. Carcinogenesis 2008; 29: 1725–1733.

    Article  CAS  Google Scholar 

  27. Mishra S, Murphy LC, Murphy LJ . The prohibitins: emerging roles in diverse functions. J Cell Mol Med 2006; 10: 353–363.

    Article  CAS  Google Scholar 

  28. Kim HS, Kim MS, Hancock AL, Harper JCP, Park JY, Poy G et al. Identification of novel Wilms’ tumor suppressor gene target genes implicated in kidney development. J Biol Chem 2007; 282: 16278–16287.

    Article  CAS  Google Scholar 

  29. Hartkamp J, Carpenter B, Roberts SGE . The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 2010; 37: 159–171.

    Article  CAS  Google Scholar 

  30. Wang S, Zhang B, Faller DV . BRG1/BRM and prohibitin are required for growth suppression by estrogen antagonists. EMBO J 2004; 23: 2293–2303.

    Article  CAS  Google Scholar 

  31. Zhang B, Chambers Kj, Faller DV, Wang S . Reprogramming of the SWI/SNF complex for coactivation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 2007; 26: 7153–7157.

    Article  CAS  Google Scholar 

  32. Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 2000; 103: 1133–1142.

    Article  CAS  Google Scholar 

  33. Kadam S, Emerson BM . Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell 2003; 11: 377–389.

    Article  CAS  Google Scholar 

  34. Sif S, Saurin AJ, Imbalzano AN, Kingston RE . Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 2001; 15: 603–618.

    Article  CAS  Google Scholar 

  35. Trotter KW, Archer TK . The BRG1 transcriptional coregulator. Nucl Receptor Signaling 2008; 6: e004.

    Article  Google Scholar 

  36. Ande SR, Mishra S . Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Bioph Res Co 2009; 390: 1023–1028.

    Article  CAS  Google Scholar 

  37. Wang W, Lee SB, Palmer R, Eillisen LW, Haber DA . A functional interaction with CBP contributes to transcriptional activator by the Wilms’ tumor suppressor WT1. J Biol Chem 2001; 276: 16810–16816.

    Article  CAS  Google Scholar 

  38. Morrow IC, Parton RG . Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 2005; 6: 725–740.

    Article  CAS  Google Scholar 

  39. Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 2003; 114: 99–111.

    Article  CAS  Google Scholar 

  40. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK et al. Regulation of histone acetylation in the nucleus by sphingosine 1-phosphate. Science 2009; 325: 1254–1257.

    Article  CAS  Google Scholar 

  41. Han BK, Emr SD . Phosphoinositide [PI (3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes Dev 2011; 25: 984–995.

    Article  CAS  Google Scholar 

  42. Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A et al. Rapid and phosphoinositol-dependent binding of the SWI-SNF-like BAF complex to chromatin after T lumphocyte receptor signaling. Cell 1998; 95: 625–636.

    Article  CAS  Google Scholar 

  43. Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK . Regulation of chromatin remodeling by inositol polyphosphates. Science 2003; 299: 114–116.

    Article  CAS  Google Scholar 

  44. Watson PJ, Fairall L, Santos GM . Schwabe JWR. structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012; 481: 335–340.

    Article  CAS  Google Scholar 

  45. Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV et al. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 2013; 51: 1–11.

    Article  Google Scholar 

  46. Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T et al. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase 1 transcription. J Cell Sci 2013; 126: 2730–2739.

    Article  CAS  Google Scholar 

  47. He B, Kim TH, Kommagani R, Feng Q, Lanz RB, Jeong JW et al. Estrogen-regulated prohibitin is required for mouse uterine development and adult function. Endrocrinology 2012; 152: 1047.

    Article  Google Scholar 

  48. Shandilya J, Wang Y, Roberts SGE . TFIIB dephosphorylation links transcription inhibition with the p53-dependent DNA damage response. Proc Natl Acad Sci USA 2012; 10: 1073.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institute of General Medical Sciences (1R01GM098609) (to KFM and SGER) and Cancer Research UK (C1356/A6630) (to SGER). We thank Alan Siegel for help with the confocal microscopy and the facility funded by National Science Foundation (DBI 0923133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S G E Roberts.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toska, E., Shandilya, J., Goodfellow, S. et al. Prohibitin is required for transcriptional repression by the WT1–BASP1 complex. Oncogene 33, 5100–5108 (2014). https://doi.org/10.1038/onc.2013.447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.447

Keywords

This article is cited by

Search

Quick links