Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MDM2’s social network

Abstract

MDM2 is considered a hub protein due to its capacity to interact with a large number of different partners of which p53 is most well described. MDM2 is an E3 ubiquitin ligase, and many, but not all, of its interactions relate directly to this activity, such as substrates, adaptors or bridges, promoters, inhibitors or complementary factors. Some interactions serve regulatory functions that in response to cellular stresses control the localisation and functions of MDM2 including protein kinases, ribosomal proteins and proteases. Moreover, interactions with nucleotides serve other functions such as mRNA to regulate protein synthesis and DNA to control transcription. To perform such a pleiotropic panorama of different functions, MDM2 is subjected to a multitude of post-translational modifications and is expressed in different isoforms. The large and diverse interactome is made possible due to the plasticity of MDM2 and in this review we have listed the MDM2 interactions until now and we will discuss how this multifaceted protein can interact with such a variety of substrates to provide a key intermediary role in different signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Uldrijan S, Pannekoek WJ, Vousden KH . An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J 2007; 1: 102–112.

    Google Scholar 

  2. Nicholson J, Hupp TR . The molecular dynamics of MDM2. Cell Cycle 2010; 10: 1878–1881.

    Google Scholar 

  3. Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 2011; 477: 349–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 2009; 6: 694–704.

    Google Scholar 

  5. Jung CH, Kim J, Park JK, Hwang SG, Moon SK, Kim WJ et al. Mdm2 increases cellular invasiveness by binding to and stabilizing the Slug mRNA. Cancer Lett 2013; 2: 270–277.

    Google Scholar 

  6. Sun Y, Klauzinska M, Lake RJ, Lee JM, Santopietro S, Raafat A et al. Trp53 regulates Notch 4 signalling through Mdm2. J Cell Sci 2011; 124: 1067–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pettersson S, Sczaniecka M, McLaren L, Russell F, Gladstone K, Hupp T et al. Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J 2013; 3: 523–536.

    Google Scholar 

  8. Zheng M, Cheng H, Banerjee I, Chen J . ALP/enigma PDZ-LIM domain proteins in the heart. J Mol Cell Biol 2010; 2: 96–102.

    CAS  PubMed  Google Scholar 

  9. Jung CR, Lim JH, Choi Y, Kim DG, Kang KJ, Noh SM et al. Enigma negatively regulates p53 through MDM2 and promotes tumor cell survival in mice. J Clin Invest 2010; 12: 4493–4506.

    Google Scholar 

  10. Lee MH, Zhao R, Phan L, Yeung SC . Roles of COP9 signalosome in cancer. Cell Cycle 2011; 18: 3057–3066.

    Google Scholar 

  11. Zhao R, Yeung SC, Chen J, Iwakuma T, Su CH, Chen B et al. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest 2011; 3: 851–865.

    Google Scholar 

  12. Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P et al. Yin yang 1 is a negative regulator of p53. Cell 2004; 7: 859–872.

    Google Scholar 

  13. Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ . The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 1994; 11: 7414–7420.

    Google Scholar 

  14. Dai MS, Lu H . Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 43: 44475–44482.

    Google Scholar 

  15. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 6: 577–587.

    Google Scholar 

  16. Zhang Q, Xiao H, Chai SC, Hoang QQ, Lu H . Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem 2011; 44: 38264–38274.

    Google Scholar 

  17. Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H . Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 17: 7654–7668.

    Google Scholar 

  18. Zhou X, Hao Q, Liao J, Zhang Q, Lu H . Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 2013; 3: 388–396.

    Google Scholar 

  19. Zhang X, Wang W, Wang H, Wang MH, Xu W, Zhang R . Identification of ribosomal protein S25 (RPS25)–MDM2–p53 regulatory feedback loop. Oncogene 2013; 22: 2782–2791.

    Google Scholar 

  20. Sun XX, DeVine T, Challagundla KB, Dai MS . Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem 2011; 26: 22730–22741.

    Google Scholar 

  21. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindström MS et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 2007; 12: 355–366.

    CAS  PubMed  Google Scholar 

  22. Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER et al. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007; 35: 5029–5037.

    Google Scholar 

  23. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 2009; 3: 316–326.

    Google Scholar 

  24. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M . Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 2008; 2: 180–189.

    Google Scholar 

  25. Xiong X, Zhao Y, He H, Sun Y . Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 2011; 30: 1798–1811.

    CAS  PubMed  Google Scholar 

  26. Fu X, Yucer N, Liu S, Li M, Yi P, Mu JJ et al. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci USA 2010; 10: 4579–4584.

    Google Scholar 

  27. Daftuar L, Zhu Y, Jacq X, Prives C . Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One 2013; 8: e68667.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. Critical role for Daxx in regulating Mdm2. Nat Cell Biol 2006; 8: 855–862.

    CAS  PubMed  Google Scholar 

  29. Song MS, Song SJ, Kim SY, Oh HJ, Lim DS . The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 2008; 13: 1863–1874.

    Google Scholar 

  30. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 1998; 18: 2831–2841.

    Google Scholar 

  31. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . Acetylation is indispensable for p53 activation. Cell 2008; 133: 612–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 4: 405–415.

    Google Scholar 

  33. Kobet E, Zeng X, Zhu Y, Keller D, Lu H . MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 2000; 23: 12547–12552.

    Google Scholar 

  34. Yap DB, Hsieh JK, Chan FS, Lu X . Mdm2: a bridge over the two tumour suppressors, p53 and Rb. Oncogene 1999; 53: 7681–7689.

    Google Scholar 

  35. Martin K, Trouche D, Hagemeier C, Sørensen TS, La Thangue NB, Kouzarides T . Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 1995; 6533: 691–694.

    Google Scholar 

  36. Meeka DW, Hupp TR . The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours? Seminars in Cancer Biology 2010; 20: 19–28.

    Google Scholar 

  37. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N et al. p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 2008; 9: 1098–1105.

    Google Scholar 

  38. Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 2012; 1: 25–35.

    Google Scholar 

  39. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001; 11: 973–982.

    Google Scholar 

  40. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20–26.

    CAS  PubMed  Google Scholar 

  41. Gama V, Gomez JA, Mayo LD, Jackson MW, Danielpour D, Song K et al. Hdm2 is a ubiquitin ligase of Ku70-Akt promotes cell survival by inhibiting Hdm2-dependent Ku70 destabilization. Cell Death Differ 2009; 5: 758–769.

    Google Scholar 

  42. Wang X, Taplick J, Geva N, Oren M . Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 2004; 1-3: 195–201.

    Google Scholar 

  43. Xirodimas DP, Chisholm J, Desterro JM, Lane DP, Hay RT . P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett 2002; 1-3: 207–211.

    Google Scholar 

  44. Miyauchi Y, Yogosawa S, Honda R, Nishida T, Yasuda H . Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J Biol Chem 2002; 51: 50131–50136.

    Google Scholar 

  45. Badciong JC, Haas AL . MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 2002; 277: 49668–49675.

    CAS  PubMed  Google Scholar 

  46. Sharp DA, Kratowicz SA, Sank MJ, George DL . Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J Biol Chem 1999; 274: 38189–38196.

    CAS  PubMed  Google Scholar 

  47. Li L, Liao J, Ruland J, Mak TW, Cohen SN . A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proc Natl Acad Sci USA 2001; 4: 1619–1624.

    Google Scholar 

  48. Li M, Brooks CL, Kon N, Gu W . A Dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 2004; 13: 879–886.

    CAS  PubMed  Google Scholar 

  49. Yang HY, Wen YY, Lin YI, Pham L, Su CH, Yang H et al. Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities. Oncogene 2007; 52: 7355–7362.

    Google Scholar 

  50. Kurki S, Latonen L, Laiho M . Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 2003; 116: 3917–3925.

    CAS  PubMed  Google Scholar 

  51. Gu L, Findley HW, Zhou M . MDM2 induces NF-kappaB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 2002; 9: 3367–3375.

    Google Scholar 

  52. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B . Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    CAS  PubMed  Google Scholar 

  53. Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA . Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer research 1999; 59: 6091–6096.

    CAS  PubMed  Google Scholar 

  54. Toledo F, Wahl GM . Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6: 909–923.

    CAS  PubMed  Google Scholar 

  55. Wade M, Wang YV, Wahl GM . The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang YV, Wade M, Wahl GM . Guarding the guardian: Mdmx plays important roles in setting p53 basal activity and determining biological responses in vivo. Cell Cycle 2009; 8: 3443–3444.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang YV, Wade M, Wong E, Li YC, Rodewald LW, Wahl GM . Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc Natl Acad Sci USA 2007; 104: 12365–12370.

    CAS  PubMed  Google Scholar 

  58. Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE . Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol 2006; 2: 433–450.

    Google Scholar 

  59. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M . HDMX stimulates HDM2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 2003; 100: 12009–12014.

    CAS  PubMed  Google Scholar 

  60. Kawai H, Lopez-Pajares V, Kim MM, Wiederschain D, Yuan ZM . RING domain-mediated interaction is a requirement for MDM2’s E3 ligase activity. Cancer Res 2007; 67: 6026–6030.

    CAS  PubMed  Google Scholar 

  61. Barak Y, Gottlieb E, Juven-Gershon T, Oren M . Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 1994; 8: 1739–1749.

    CAS  PubMed  Google Scholar 

  62. Cheng TH, Cohen SN . Human MDM2 isoforms translated differentially on constitutive versus p53-regulated transcripts have distinct functions in the p53/MDM2 and TSG101/MDM2 feedback control loops. Mol Cell Biol 2007; 1: 111–119.

    Google Scholar 

  63. Perry ME . Mdm2 in the response to radiation. Mol Cancer Res 2004; 1: 9–19.

    Google Scholar 

  64. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumour suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591–602.

    CAS  PubMed  Google Scholar 

  65. Knappskog S, Lønning PE . Effects of the MDM2 promoter SNP285 and SNP309 on Sp1 transcription factor binding and cancer risk. Transcription 2011; 5: 207–210.

    Google Scholar 

  66. Bartel F, Taubert H, Harris LC . Alternative and aberrant splicing of MDM2mRNA in human cancer. Cancer Cell 2002; 1: 9–15.

    Google Scholar 

  67. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J . Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 1996; 2: 912–917.

    CAS  PubMed  Google Scholar 

  68. Okoro DR, Rosso M, Bargonetti J . Splicing up mdm2 for cancer proteome diversity. Genes Cancer 2012; 3-4: 311–319.

    Google Scholar 

  69. Lane DP, Verma C . Mdm2 in evolution. Genes Cancer 2012; 3: 320–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nicholson J, Neelagandan K, Huart AS, Ball K, Molloy MP, Hupp T . AniTRAQproteomics screen reveals the effects of the MDM2 binding ligand Nutlin-3 on cellular proteostasis. J Proteome Res 2012; 11: 5464–5478.

    CAS  PubMed  Google Scholar 

  71. Biderman L, Manley JL, Prives C . Mdm2 and MdmX as regulators of gene expression. Genes and Cancer 2012; 3: 264–273.

    CAS  PubMed  Google Scholar 

  72. ExPASy. http://www.expasy.org.

  73. Xue Y, Li A, Yao X PAIL: prediction of acetylation on internal lysines. http://bdmpail.biocuckoo.org/prediction.php.

  74. Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL . Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 2006; 23: 251–263.

    CAS  PubMed  Google Scholar 

  75. Sczaniecka M, Gladstone K, Pettersson S, McLaren L, Huart AS, Wallace M . MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism. J Biol Chem 2012; 17: 14052–14068.

    Google Scholar 

  76. Yogosawa S, Miyauchi Y, Honda R, Tanaka H, Yasuda H . Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem Biophys Res Commun 2003; 4: 869–872.

    Google Scholar 

  77. Oh W, Lee EW, Lee D, Yang MR, Ko A, Yoon CH et al. Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene 2010; 29: 4101–4112.

    CAS  PubMed  Google Scholar 

  78. Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol 2006; 3: 285–291.

    Google Scholar 

  79. Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H . MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem 2002; 34: 30838–30843.

    Google Scholar 

  80. Vlatkovic N, Guerrera S, Li Y, Linn S, Haines DS, Boyd MT . MDM2 interacts with the C-terminus of the catalytic subunit of DNA polymerase epsilon. Nucleic Acids Res 2000; 18: 3581–3586.

    Google Scholar 

  81. Asahara H, Li Y, Fuss J, Haines DS, Vlatkovic N, Boyd MT et al. Stimulation of human DNA polymerase epsilon by MDM2. Nucleic Acids Res 2003; 9: 2451–2459.

    Google Scholar 

  82. Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995; 6533: 694–698.

    Google Scholar 

  83. Hsieh JK, Chan FS, O’Connor DJ, Mittnacht S, Zhong S, Lu X . RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell 1999; 2: 181–193.

    Google Scholar 

  84. Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H et al. The Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res 2009; 20: 8111–8119.

    Google Scholar 

  85. Wu H, Pomeroy SL, Ferreira M, Teider N, Mariani J, Nakayama KI et al. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat Med 2011; 3: 347–355.

    Google Scholar 

  86. Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS et al. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 2002; 4: 761–771.

    Google Scholar 

  87. Xu H, Zhang Z, Li M, Zhang R . MDM2 promotes proteasomal degradation of p21Waf1 via a conformation change. J Biol Chem 2010; 24: 18407–18414.

    Google Scholar 

  88. Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB et al. Physical and functional interactions between PML and MDM2. J Biol Chem 2003; 31: 29288–29297.

    Google Scholar 

  89. Boyd MT, Vlatkovic N, Haines DS . A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. J Biol Chem 2000; 275: 31883–31890.

    CAS  PubMed  Google Scholar 

  90. Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW . Defining the molecular basis of Arf and Hdm2 interactions. Journal of Molecular Biology 2001; 314: 263–277.

    CAS  PubMed  Google Scholar 

  91. Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 6: 713–723.

    Google Scholar 

  92. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 6: 725–734.

    Google Scholar 

  93. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R . RYBP stabilizes p53 by modulating MDM2. EMBO Rep 2009; 2: 166–172.

    Google Scholar 

  94. Wang KS, Chen G, Shen HL, Li TT, Chen F, Wang QW et al. Insulin receptor tyrosine kinase substrate enhances low levels of MDM2-mediated p53 ubiquitination. PLoS One 2011; 8: e23571.

    Google Scholar 

  95. Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA et al. Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 2002; 14: 3715–3727.

    Google Scholar 

  96. Kass EM, Poyurovsky MV, Zhu Y, Prives C . Mdm2 and PCAF increase Chk2 ubiquitination and degradation independently of their intrinsic E3 ligase activities. Cell Cycle 2009; 3: 430–437.

    Google Scholar 

  97. Léveillard T, Wasylyk B . The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem 1997; 49: 30651–30661.

    Google Scholar 

  98. Chen S, Wang DL, Liu Y, Zhao L, Sun FL . RAD6 regulates the dosage of p53 by a combination of transcriptional and posttranscriptional mechanisms. Nature 2004; 432: 640–645.

    Google Scholar 

  99. Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM . Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 2005; 280: 18771–18781.

    CAS  PubMed  Google Scholar 

  100. Chen L, Li Z, Zwolinska AK, Smith MA, Cross B, Koomen J et al. MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO J 2010; 29: 2538–2552.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M . MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 1999; 1: 5–9.

    Google Scholar 

  102. Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T et al. L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle 2006; 5: 1719–1729.

    CAS  PubMed  Google Scholar 

  103. Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C . Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 2002; 21: 4037–4048.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu T, Li Y, Gu H, Zhu G, Li J, Cao L et al. P21-activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem 2013; 5: 3359–3369.

    Google Scholar 

  105. Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F et al. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 2007; 25: 739–750.

    CAS  PubMed  Google Scholar 

  106. Mo P, Wang H, Lu H, Boyd DD, Yan C . MDM2 mediates ubiquitination and degradation of activating transcription factor 3. J Biol Chem 2010; 35: 26908–26915.

    Google Scholar 

  107. Kim MM, Wiederschain D, Kennedy D, Hansen E, Yuan ZM. . Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP). Oncogene 2007; 29: 4209–4215.

    Google Scholar 

  108. Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005; 1: 75–87.

    Google Scholar 

  109. Gu L, Zhu N, Zhang H, Durden DL, Feng Y, Zhou M . Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell 2009; 5: 363–375.

    Google Scholar 

  110. Gu L, Zhang H, He J, Li J, Huang M, Zhou M . MDM2 regulates MYCN mRNA stabilization and translation in human neuroblastoma cells. Oncogene 2012; 11: 1342–1353.

    Google Scholar 

  111. Elenbaas B, Dobbelstein M, Roth J, Shenk T, Levine AJ . The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol Med 1996; 4: 439–451.

    Google Scholar 

  112. Lehman JA, Mayo LD . Integration of DNA damage and repair with murine double-minute 2 (mdm2) in tumorigenesis. Int J Mol Sci 2012; 12: 16373–16386.

    Google Scholar 

  113. Busso CS, Iwakuma T, Izumi T . Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene 2009; 13: 1616–1625.

    Google Scholar 

  114. Mayo LD, Turchi JJ, Berberich SJ . Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 1997; 22: 5013–5016.

    Google Scholar 

  115. Singh S, Ramamoorthy M, Vaughan C, Yeudall WA, Deb S, Palit Deb S . Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ 2013; 4: 558–566.

    Google Scholar 

  116. Sood R, Ritov G, Richter-Levin G, Barki-Harrington L . Selective increase in the association of the β2 adrenergic receptor, β arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma. Behav Brain Res 2013; 240: 26–28.

    CAS  PubMed  Google Scholar 

  117. Maguire M, Nield PC, Devling T, Jenkins RE, Park BK, Polański R et al. MDM2 regulates dihydrofolate reductase activity through monoubiquitination. Cancer Res 2008; 9: 3232–3242.

    Google Scholar 

  118. Lau R, Niu MY, Pratt MA . cIAP2 represses IKKα/β-mediated activation of MDM2 to prevent p53 degradation. Cell Cycle 2012; 21: 4009–4019.

    Google Scholar 

  119. Bae S, Jung JH, An IS, Kim OY, Lee MJ, Lee JH et al. TRIAD1 is negatively regulated by the MDM2 E3 ligase. Oncol Rep 2012; 28: 1924–1928.

    CAS  PubMed  Google Scholar 

  120. Huart AS, MacLaine NJ, Meek DW, Hupp TR . CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem 2009; 47: 32384–32394.

    Google Scholar 

  121. Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C et al. Protein kinase CK1δ phosphorylates key sites in the acidic domain of murine (MDM2) that regulate p53 turnover. Biochemistry 2004; 43: 16356–16364.

    CAS  PubMed  Google Scholar 

  122. Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCFβ-TRCP ubiquitin ligase. Cancer Cell 2010; 2: 147–159.

    Google Scholar 

  123. Pettersson S, Kelleher M, Pion E, Wallace M, Ball KL . Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2. Biochem J 2009; 3: 575–585.

    Google Scholar 

  124. Balint E, Bates S, Vousden KH . Mdm2 binds p73 alpha without targeting degradation. Oncogene 1999; 18: 3923–3929.

    CAS  PubMed  Google Scholar 

  125. Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 1999; 19: 3257–3266.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Dobbelstein M, Wienzek S, König C, Roth J . Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 1999; 18: 2101–2106.

    CAS  PubMed  Google Scholar 

  127. Ongkeko WM, Wang XQ, Siu WY, Lau AW, Yamashita K, Harris AL et al. MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr Biol 1999; 15: 829–832.

    Google Scholar 

  128. Calabrò V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G . The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 2002; 277: 2674–2681.

    PubMed  Google Scholar 

  129. Kadakia M, Slader C, Berberich SJ . Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 2001; 6: 321–330.

    Google Scholar 

  130. Zdzalik M, Pustelny K, Kedracka-Krok S, Huben K, Pecak A, Wladyka B et al. Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle 2010; 22: 4584–4591.

    Google Scholar 

  131. Oliver TG, Meylan E, Chang GP, Xue W, Burke JR, Humpton TJ et al. Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 2011; 1: 57–71.

    Google Scholar 

  132. Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L et al. FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. EMBO J 2002; 7: 1704–1712.

    Google Scholar 

  133. Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D . Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J 2002; 7: 1704–1712.

    Google Scholar 

  134. Dohmesen C, Koeppel M, Dobbelstein M. . Specific inhibition of Mdm2-mediated neddylation by Tip60. Cell Cycle 2008; 2: 222–231.

    Google Scholar 

  135. Brenkman AB, de Keizer PL, van den Broek NJ, Jochemsen AG, Burgering BM . Mdm2 induces mono-ubiquitination of FOXO4. PLoS One 2008; 3: e2819.

    PubMed  PubMed Central  Google Scholar 

  136. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D . Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 1999; 26: 14973–14977.

    Google Scholar 

  137. Girnita L, Girnita A, Larsson O. . Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci USA 2003; 14: 8247–8252.

    Google Scholar 

  138. Lessard F, Stefanovsky V, Tremblay MG, Moss T . The cellular abundance of the essential transcription termination factor TTF-I regulates ribosome biogenesis and is determined by MDM2 ubiquitinylation. Nucleic Acids Res 2012; 12: 5357–5367.

    Google Scholar 

  139. Sun NK, Huang SL, Chien KY, Chao CC. . Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28-MDM2-p53 complexes and by preventing the ubiquitination and degradation of p53. Biochem J 2012; 2: 303–314.

    Google Scholar 

  140. Lai KP, Leong WF, Chau JF, Jia D, Zeng L, Liu H et al. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. EMBO J 2010; 17: 2994–3006.

    Google Scholar 

  141. Lee D, Park SJ, Sung KS, Park J, Lee SB, Park SY et al. Mdm2 associates with Ras effector NORE1 to induce the degradation of oncoprotein HIPK1. EMBO Rep 2012; 2: 163–169.

    Google Scholar 

  142. Jung YS, Qian Y, Chen X . DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair (Amst) 2012; 2: 177–184.

    Google Scholar 

  143. Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K . Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 2004; 7017: 640–645.

    Google Scholar 

  144. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA . The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 2007; 4: 342–354.

    Google Scholar 

  145. Hew HC, Liu H, Miki Y, Yoshida K . PKCdelta?regulates Mdm2 independently of p53 in the apoptotic response to DNA damage. Mol Carcinog 2011; 50: 719–731.

    CAS  PubMed  Google Scholar 

  146. Wen W, Peng C, Kim MO, Ho Jeong C, Zhu F, Yao K et al. Knockdown of RNF2 induces apoptosis by regulating MDM2 and p53 stability. Oncogene 2014; 33: 421–428.

    CAS  PubMed  Google Scholar 

  147. Thotala DK, Hallahan DE, Yazlovitskaya EM . Glycogen synthase kinase 3β inhibitors protect hippocampal neurons from radiation-induced apoptosis by regulating MDM2-p53 pathway. Cell Death Differ 2012; 3: 387–396.

    Google Scholar 

  148. Shouse GP, Nobumori Y, Panowicz MJ, Liu X . ATM-mediated phosphorylation activates the tumor-suppressive function of B56gamma- PP2A. Oncogene 2011; 30: 3755–3765.

    CAS  PubMed  Google Scholar 

  149. Polanski R, Maguire M, Nield PC, Jenkins RE, Park BK, Krawczynska K et al. MDM2 interacts with NME2 (non-metastatic cells 2, protein) and suppresses the ability of NME2 to negatively regulate cell motility. Carcinogenesis 2011; 8: 1133–1142.

    Google Scholar 

  150. Jeong MH, Bae J, Kim WH, Yoo SM, Kim JW, Song PI et al. p19ras interacts with and activates p73 by involving the MDM2 protein. J Biol Chem 2006; 13: 8707–8715.

    Google Scholar 

  151. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. MDM2- HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002; 21: 6236–6245.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Moumen A, Masterson P, O'Connor MJ, Jackson SP . hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 2005; 6: 1065–1078.

    Google Scholar 

  153. Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K . ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem 2010; 7: 4909–4919.

    Google Scholar 

  154. Embade N, Fernández-Ramos D, Varela-Rey M, Beraza N, Sini M, Gutiérrez de Juan V et al. Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology 2012; 4: 1237–1248.

    Google Scholar 

  155. Minsky N, Oren M . The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 2004; 16: 631–639.

    CAS  PubMed  Google Scholar 

  156. Challen C, Anderson JJ, Chrzanowska-Lightowlers ZM, Lightowlers RN, Lunec J . Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA. Int J Oncol 2012; 3: 851–859.

    Google Scholar 

  157. Zhou S, Gu L, He J, Zhang H, Zhou M . MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol Cell Biol 2011; 24: 4928–4937.

    Google Scholar 

Download references

Acknowledgements

We apologise to those whose works have not been cited in this article owing to lack of space. This article is supported by CONACyT CB-166233; PROMEP/103.5/12/3953 and Fondo de Apoyo a la Investigación (C13-FAI-03-57.57). RF is funded by La Ligue Contre le Cancer, Inserm and the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101). The authors thank Dr Gómez-Puyou for revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Olivares-Illana.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fåhraeus, R., Olivares-Illana, V. MDM2’s social network. Oncogene 33, 4365–4376 (2014). https://doi.org/10.1038/onc.2013.410

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.410

Keywords

This article is cited by

Search

Quick links