Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB

Abstract

The regulation of mRNA deadenylation constitutes a pivotal mechanism of the post-transcriptional control of gene expression. Here we show that the antiproliferative protein Tob, a component of the Caf1–Ccr4 deadenylase complex, is involved in regulating the expression of the proto-oncogene c-myc. The c-myc mRNA contains cis elements (CPEs) in its 3′-untranslated region (3′-UTR), which are recognized by the cytoplasmic polyadenylation element-binding protein (CPEB). CPEB recruits Caf1 deadenylase through interaction with Tob to form a ternary complex, CPEB–Tob–Caf1, and negatively regulates the expression of c-myc by accelerating the deadenylation and decay of its mRNA. In quiescent cells, c-myc mRNA is destabilized by the trans-acting complex (CPEB–Tob–Caf1), while in cells stimulated by the serum, both Tob and Caf1 are released from CPEB, and c-Myc expression is induced early after stimulation by the stabilization of its mRNA as an ‘immediate-early gene’. Collectively, these results indicate that Tob is a key factor in the regulation of c-myc gene expression, which is essential for cell growth. Thus, Tob appears to function in the control of cell growth at least, in part, by regulating the expression of c-myc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gallie DR . The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 1991; 5: 2108–2116.

    Article  CAS  Google Scholar 

  2. Iizuka N, Najita L, Franzusoff A, Sarnow P . Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 1994; 14: 7322–7330.

    Article  CAS  Google Scholar 

  3. Decker CJ, Parker R . A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 1993; 7: 1632–1643.

    Article  CAS  Google Scholar 

  4. Wu X, Brewer G . The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012; 500: 10–21.

    Article  CAS  Google Scholar 

  5. Eckmann CR, Rammelt C, Wahle E . Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2011; 2: 348–361.

    Article  CAS  Google Scholar 

  6. Korner CG, Wormington M, Muckenthaler M, Schneider S, Dehlin E, Wahle E . The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J 1998; 17: 5427–5437.

    Article  CAS  Google Scholar 

  7. Barnard DC, Ryan K, Manley JL, Richter JD . Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 2004; 119: 641–651.

    Article  CAS  Google Scholar 

  8. Kim JH, Richter JD . Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 2006; 24: 173–183.

    Article  CAS  Google Scholar 

  9. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12: 1054–1063.

    Article  CAS  Google Scholar 

  10. Uchida N, Hoshino S, Katada T . Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J Biol Chem 2004; 279: 1383–1391.

    Article  CAS  Google Scholar 

  11. Bianchin C, Mauxion F, Sentis S, Seraphin B, Corbo L . Conservation of the deadenylase activity of proteins of the Caf1 family in human. RNA 2005; 11: 487–494.

    Article  CAS  Google Scholar 

  12. Chen J, Chiang YC, Denis CL . CCR4 a 3'–5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 2002; 21: 1414–1426.

    Article  CAS  Google Scholar 

  13. Viswanathan P, Ohn T, Chiang YC, Chen J, Denis CL . Mouse CAF1 can function as a processive deadenylase/3'–5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J Biol Chem 2004; 279: 23988–23995.

    Article  CAS  Google Scholar 

  14. Ikematsu N, Yoshida Y, Kawamura-Tsuzuku J, Ohsugi M, Onda M, Hirai M et al. Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 1999; 18: 7432–7441.

    Article  CAS  Google Scholar 

  15. Okochi K, Suzuki T, Inoue J, Matsuda S, Yamamoto T . Interaction of anti-proliferative protein Tob with poly(A)-binding protein and inducible poly(A)-binding protein: implication of Tob in translational control. Genes Cells 2005; 10: 151–163.

    Article  CAS  Google Scholar 

  16. Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CY, Zhong Z et al. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 2007; 27: 7791–7801.

    Article  CAS  Google Scholar 

  17. Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I et al. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 2007; 21: 3135–3148.

    Article  CAS  Google Scholar 

  18. Ruan L, Osawa M, Hosoda N, Imai S, Machiyama A, Katada T et al. Quantitative characterization of Tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation. J Biol Chem 2010; 285: 27624–27631.

    Article  CAS  Google Scholar 

  19. Hosoda N, Funakoshi Y, Hirasawa M, Yamagishi R, Asano Y, Miyagawa R et al. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J 2011; 30: 1311–1323.

    Article  CAS  Google Scholar 

  20. Jin M, Wang XM, Tu Y, Zhang XH, Gao X, Guo N et al. The negative cell cycle regulator, Tob (transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory. Neuroscience 2005; 131: 647–659.

    Article  CAS  Google Scholar 

  21. Wang XM, Gao X, Zhang XH, Tu YY, Jin ML, Zhao GP et al. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning. Biochem Biophys Res Commun 2006; 340: 1023–1027.

    Article  CAS  Google Scholar 

  22. Maekawa M, Nishida E, Tanoue T. . Identification of the Anti-proliferative protein Tob as a MAPK substrate. J Biol Chem 2002; 277: 37783–37787.

    Article  CAS  Google Scholar 

  23. Suzuki T, K-Tsuzuku J, Ajima R, Nakamura T, Yoshida Y, Yamamoto T . Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev 2002; 16: 1356–1370.

    Article  Google Scholar 

  24. Ellis RE, Kimble J . The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans. Genetics 1995; 139: 561–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong B, Rui Y, Zhang M, Shi K, Jia S, Tian T et al. Tob1 controls dorsal development of zebrafish embryos by antagonizing maternal beta-catenin transcriptional activity. Dev Cell 2006; 11: 225–238.

    Article  CAS  Google Scholar 

  26. Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N et al. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 2000; 103: 1085–1097.

    Article  CAS  Google Scholar 

  27. Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2011; 2: 1174–1182.

    Article  Google Scholar 

  28. Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD . Control of cellular senescence by CPEB. Genes Dev 2006; 20: 2701–2712.

    Article  CAS  Google Scholar 

  29. Ren YG, Martinez J, Virtanen A . Identification of the active site of poly(A)-specific ribonuclease by site-directed mutagenesis and Fe(2+)-mediated cleavage. J Biol Chem 2002; 277: 5982–5987.

    Article  CAS  Google Scholar 

  30. Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J . Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 1986; 261: 9161–9166.

    CAS  Google Scholar 

  31. Burns DM, Richter JD . CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2008; 22: 3449–3460.

    Article  CAS  Google Scholar 

  32. Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 1998; 21: 1129–1139.

    Article  CAS  Google Scholar 

  33. Zearfoss NR, Alarcon JM, Trifilieff P, Kandel E, Richter JD . A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J Neurosci 2008; 28: 8502–8509.

    Article  CAS  Google Scholar 

  34. Belloc E, Mendez R . A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 2008; 452: 1017–1021.

    Article  CAS  Google Scholar 

  35. Arumugam K, Wang Y, Hardy LL, MacNicol MC, MacNicol AM . Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 2010; 29: 387–97.

    Article  CAS  Google Scholar 

  36. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R . A combinatorial code for CPE-mediated translational control. Cell 2008; 132: 434–448.

    Article  CAS  Google Scholar 

  37. Wang YY, Charlesworth A, Byrd SM, Gregerson R, MacNicol MC, MacNicol AM . A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Dev Biol 2008; 317: 454–466.

    Article  CAS  Google Scholar 

  38. MacNicol MC, MacNicol AM . Developmental timing of mRNA translation—integration of distinct regulatory elements. Mol Reprod Dev 2010; 77: 662–669.

    Article  CAS  Google Scholar 

  39. Mateyak MK, Obaya AJ, Sedivy JM . c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 1999; 19: 4672–4683.

    Article  CAS  Google Scholar 

  40. Blanchard JM, Piechaczyk M, Dani C, Chambard JC, Franchi A, Pouyssegur J et al. C-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 1985; 317: 443–445.

    Article  CAS  Google Scholar 

  41. Kindy MS, Sonenshein GE . Regulation of oncogene expression in cultured aortic smooth muscle cells. Post-transcriptional control of c-myc mRNA. J Biol Chem 1986; 261: 12865–12868.

    CAS  PubMed  Google Scholar 

  42. Kerkhoff E, Houben R, Loffler S, Troppmair J, Lee JE, Rapp UR . Regulation of c-myc expression by Ras/Raf signalling. Oncogene 1998; 16: 211–216.

    Article  CAS  Google Scholar 

  43. Kim KC, Oh WJ, Ko KH, Shin CY, Wells DG . Cyclin B1 expression regulated by cytoplasmic polyadenylation element binding protein in astrocytes. J Neurosci 2011; 31: 12118–12128.

    Article  CAS  Google Scholar 

  44. Novoa I, Gallego J, Ferreira PG, Mendez R . Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol 2010; 12: 447–456.

    Article  CAS  Google Scholar 

  45. Aslam A, Mittal S, Koch F, Andrau JC, Winkler GS . The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol Biol Cell 2009; 20: 3840–3850.

    Article  CAS  Google Scholar 

  46. Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T et al. Structural basis for the antiproliferative activity of the Tob–hCaf1 complex. J Biol Chem 2009; 284: 13244–13255.

    Article  CAS  Google Scholar 

  47. Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD . Translational control of the embryonic cell cycle. Cell 2002; 109: 473–483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A-B Shyu for anti-Caf1 antibody. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘RNA regulation’ (No. 20112006) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hoshino.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogami, K., Hosoda, N., Funakoshi, Y. et al. Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene 33, 55–64 (2014). https://doi.org/10.1038/onc.2012.548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.548

Keywords

This article is cited by

Search

Quick links