Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bach1 is critical for the transformation of mouse embryonic fibroblasts by RasV12 and maintains ERK signaling

Abstract

Reactive oxygen species (ROS), by-products of aerobic respiration, promote genetic instability and contribute to the malignant transformation of cells. Among the genes related to ROS metabolism, Bach1 is a repressor of the oxidative stress response, and a negative regulator of ROS-induced cellular senescence directed by p53 in higher eukaryotes. While ROS are intimately involved in carcinogenesis, it is not clear whether Bach1 is involved in this process. We found that senescent Bach1-deficient mouse embryonic fibroblasts (MEFs) underwent spontaneous immortalization the same as did the wild-type cells. When transduced with constitutively active Ras (H-RasV12), the proliferation and colony formation of these cells in vitro were markedly reduced. When transplanted into athymic nude mice, the growth and vascularization of tumors derived from Bach1-deficient cells were also decreased. Gene expression profiling of the MEFs revealed a new H-RasV12 signature, which was distinct from the previously reported signatures in epithelial tumors, and was partly dependent on Bach1. The Bach1-deficient cells showed diminished phosphorylation of MEK and ERK1/2 in response to H-RasV12, which was consistent with the alterations in the gene expression profile, including phosphatase genes. Finally, Bach1-deficient mice were less susceptible to 4-nitroquinoline-1-oxidide (4-NQO)-induced tongue carcinoma than wild-type mice. Our data provide evidence for a critical role of Bach1 in cell transformation and tumor growth induced by activated H-RasV12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jackson AL, Loeb LA . The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001; 477: 7–21.

    Article  CAS  Google Scholar 

  2. Cerutti PA . Prooxidant states and tumor promotion. Science 1985; 227: 375–381.

    Article  CAS  Google Scholar 

  3. Weinberg F, Chandel NS . Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 2009; 66: 3663–3673.

    Article  CAS  Google Scholar 

  4. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH . Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 2007; 67: 10823–10830.

    Article  CAS  Google Scholar 

  5. Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C et al. Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 2001; 15: 87–89.

    Article  CAS  Google Scholar 

  6. Igarashi K, Sun J . The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 2006; 8: 107–118.

    Article  CAS  Google Scholar 

  7. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996; 16: 6083–6095.

    Article  CAS  Google Scholar 

  8. Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002; 21: 5216–5224.

    Article  CAS  Google Scholar 

  9. Omura S, Suzuki H, Toyofuku M, Ozono R, Kohno N, Igarashi K . Effects of genetic ablation of bach1 upon smooth muscle cell proliferation and atherosclerosis after cuff injury. Genes Cells 2005; 10: 277–285.

    Article  CAS  Google Scholar 

  10. Yano Y, Ozono R, Oishi Y, Kambe M, Yoshizumi M, Ishida T et al. Genetic ablation of the transcription repressor Bach1 leads to myocardial protection against ischemia/reperfusion in mice. Genes Cells 2006; 11: 791–803.

    Article  CAS  Google Scholar 

  11. Dohi Y, Ikura T, Hoshikawa Y, Katoh Y, Ota K, Nakanome A et al. Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin. Nat Struct Mol Biol 2008; 15: 1246–1254.

    Article  CAS  Google Scholar 

  12. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  Google Scholar 

  13. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.

    Article  CAS  Google Scholar 

  14. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5: 741–747.

    Article  CAS  Google Scholar 

  15. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  Google Scholar 

  16. Alexandrova AY, Kopnin PB, Vasiliev JM, Kopnin BP . ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp Cell Res 2006; 312: 2066–2073.

    Article  CAS  Google Scholar 

  17. Bos JL . The ras gene family and human carcinogenesis. Mutat Res 1988; 195: 255–271.

    Article  CAS  Google Scholar 

  18. Dai C, Whitesell L, Rogers AB, Lindquist S . Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007; 130: 1005–1018.

    Article  CAS  Google Scholar 

  19. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    Article  CAS  Google Scholar 

  20. Carnero A, Hudson JD, Price CM, Beach DH . p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2: 148–155.

    Article  CAS  Google Scholar 

  21. Newbold RF, Overell RW . Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 1983; 304: 648–651.

    Article  CAS  Google Scholar 

  22. Filleur S, Hirsch J, Wille A, Schon M, Sell C, Shearer MH et al. INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and Wnt signaling. Cancer Cell Int 2009; 9: 28.

    Article  Google Scholar 

  23. Masuda K, Katagiri C, Nomura M, Sato M, Kakumoto K, Akagi T et al. MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm. Biochem Biophys Res Commun 2010; 393: 201–206.

    Article  CAS  Google Scholar 

  24. Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP . ESRP1and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33: 591–601.

    Article  CAS  Google Scholar 

  25. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245–248.

    Article  CAS  Google Scholar 

  26. Oshima Y, Shukunami C, Honda J, Nishida K, Tashiro F, Miyazaki J et al. Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Invest Ophthalmol Vis Sci 2003; 44: 1814–1823.

    Article  Google Scholar 

  27. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A et al. The DNA sequence and biological annotation of human chromosome 1. Nature 2006; 441: 315–321.

    Article  CAS  Google Scholar 

  28. Gulbins E, Coggeshall KM, Langlet C, Baier G, Bonnefoy-Berard N, Burn P et al. Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein. Mol Cell Biol 1994; 14: 906–913.

    Article  CAS  Google Scholar 

  29. Loboda A, Nebozhyn M, Klinghoffer R, Frazier J, Chastain M, Arthur W et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genom 2010; 3: 26.

    Article  Google Scholar 

  30. Friedberg I, Nika K, Tautz L, Saito K, Cerignoli F, Godzik A et al. Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. FEBS Lett 2007; 581: 2527–2533.

    Article  CAS  Google Scholar 

  31. Liu C, Shi Y, Du Y, Ning X, Liu N, Huang D et al. Dual-specificity phosphatase DUSP1 protects overactivation of hypoxia-inducible factor 1 through inactivating ERK MAPK. Exp Cell Res 2005; 309: 410–418.

    Article  CAS  Google Scholar 

  32. Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C et al. Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 1997; 272: 5141–5151.

    Article  CAS  Google Scholar 

  33. Ritt DA, Monson DM, Specht SI, Morrison DK . Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 2010; 30: 806–819.

    Article  CAS  Google Scholar 

  34. Yu W, Imoto I, Inoue J, Onda M, Emi M, Inazawa J . A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. Oncogene 2007; 26: 1178–1187.

    Article  CAS  Google Scholar 

  35. Tumurbaatar I, Cizmecioglu O, Hoffmann I, Grummt I, Voit R . Human Cdc14B promotes progression through mitosis by dephosphorylating Cdc25 and regulating Cdk1/cyclin B activity. PLoS One 2011; 6: 14711.

    Article  Google Scholar 

  36. Karnoub AE, Weinberg RA . Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9: 517–531.

    Article  CAS  Google Scholar 

  37. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 2009; 106: 4519–4524.

    Article  CAS  Google Scholar 

  38. Iwasa H, Han J, Ishikawa F . Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 2003; 8: 131–144.

    Article  CAS  Google Scholar 

  39. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 2005; 17: 215–224.

    Article  CAS  Google Scholar 

  40. Moore KA, Sethi R, Doanes AM, Johnson TM, Pracyk JB, Kirby M et al. Rac1 is required for cell proliferation and G2/M progression. Biochem J 1997; 326 (Pt 1): 17–20.

    Article  CAS  Google Scholar 

  41. Liu R, Li B, Qiu M . Elevated superoxide production by active H-ras enhances human lung WI-38 VA-13 cell proliferation, migration and resistance to TNF-alpha. Oncogene 2001; 20: 1486–1496.

    Article  CAS  Google Scholar 

  42. Kim EY, Seo JM, Cho KJ, Kim JH . Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene 2010; 29: 1167–1178.

    Article  CAS  Google Scholar 

  43. Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ . Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 2004; 10: 301–313.

    Article  CAS  Google Scholar 

  44. Suzui M, Yoshimi N, Tanaka T, Mori H . Infrequent Ha-ras mutations and absence of Ki-ras, N-ras, and p53 mutations in 4-nitroquinoline 1-oxide-induced rat oral lesions. Mol Carcinog 1995; 14: 294–298.

    Article  CAS  Google Scholar 

  45. Owens DM, Keyse SM . Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007; 26: 3203–3213.

    Article  CAS  Google Scholar 

  46. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 313–322.

    Article  CAS  Google Scholar 

  47. Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K . Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA 2004; 101: 1461–1466.

    Article  CAS  Google Scholar 

  48. Igarashi K, Hoshino H, Muto A, Suwabe N, Nishikawa S, Nakauchi H et al. Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for beta-globin locus control region complex. J Biol Chem 1998; 273: 11783–11790.

    Article  CAS  Google Scholar 

  49. Willis D, Moore AR, Frederick R, Willoughby DA . Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 1996; 2: 87–90.

    Article  CAS  Google Scholar 

  50. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.

    Article  CAS  Google Scholar 

  51. MacLeod AK, McMahon M, Plummer SM, Higgins LG, Penning TM, Igarashi K et al. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 2009; 30: 1571–1580.

    Article  CAS  Google Scholar 

  52. Chiarugi P . The redox regulation of LMW-PTP during cell proliferation or growth inhibition. IUBMB Life 2001; 52: 55–59.

    Article  CAS  Google Scholar 

  53. Todaro GJ, Green H . Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 1963; 17: 299–313.

    Article  CAS  Google Scholar 

  54. Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007; 448: 375–379.

    Article  CAS  Google Scholar 

  55. Swift S, Lorens J, Achacoso P, Nolan GP . Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293 T cell-based systems. Curr Protoc Immunol 2001; Chapter 10: Unit 10 17C.

  56. Kuroishi T, Endo Y, Muramoto K, Sugawara S . Biotin deficiency up-regulates TNF-alpha production in murine macrophages. J Leukoc Biol 2008; 83: 912–920.

    Article  CAS  Google Scholar 

  57. Ota K, Dohi Y, Brydun A, Nakanome A, Ito S, Igarashi K . Identification of senescence-associated genes and their networks under oxidative stress by the analysis of Bach1. Antioxid Redox Signal 2011; 14: 2441–2451.

    Article  CAS  Google Scholar 

  58. Yamasaki C, Tashiro S, Nishito Y, Sueda T, Igarashi K . Dynamic cytoplasmic anchoring of the transcription factor Bach1 by intracellular hyaluronic acid binding protein IHABP. J Biochem 2005; 137: 287–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Nobuyuki Tanaka from Nippon Medical University and Fuyuki Ishikawa from Kyoto University for kindly providing plasmids. This work was supported by Grants-in-aid and the Network Medicine Global-COE Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Additional initial support was provided by the Uehara Foundation, the Takeda Foundation and the Astelas Foundation for Research on Metabolic Disorders. Restoration of laboratory damage from the 2011 Tohoku earthquake was provided in part by the Astelas Foundation for Research on Metabolic Disorders, the Banyu Foundation, the Naito Foundation, A Miyazaki and A Iida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Igarashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanome, A., Brydun, A., Matsumoto, M. et al. Bach1 is critical for the transformation of mouse embryonic fibroblasts by RasV12 and maintains ERK signaling. Oncogene 32, 3231–3245 (2013). https://doi.org/10.1038/onc.2012.336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.336

Keywords

This article is cited by

Search

Quick links