Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

Abstract

Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Meyers MO, Klauber-Demore N, Ollila DW, Amos KD, Moore DT, Drobish AA et al. Impact of breast cancer molecular subtypes on locoregional recurrence in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol 2011; 18: 2851–2857.

    Article  PubMed  Google Scholar 

  2. Pazaiti A, Fentiman IS . Basal phenotype breast cancer: implications for treatment and prognosis. Womens Health 2011; 7: 181–202.

    Google Scholar 

  3. Cowin P, Rowlands TM, Hatsell SJ . Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005; 17: 499–508.

    Article  CAS  PubMed  Google Scholar 

  4. Jeanes A, Gottardi CJ, Yap AS . Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27: 6920–6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 2010; 70: 968–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ou JN, Torrisani J, Unterberger A, Provencal N, Shikimi K, Karimi M et al. Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem Pharmacol 2007; 73: 1297–1307.

    Article  CAS  PubMed  Google Scholar 

  7. Corsino PE, Davis BJ, Norgaard PH, Parker NN, Law M, Dunn W et al. Mammary tumors initiated by constitutive Cdk2 activation contain an invasive basal-like component. Neoplasia 2008; 10: 1240–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Facina G, Lopes-Costa PV, Dos Santos AR, De Vasconcelos-Valenca RJ, Pinho-Sobral AL, Ferreira-Filho CP et al. Immunohistochemical expression of E-cadherin in sclerosing adenosis, ductal carcinoma in situ and invasive ductal carcinoma of the breast. Diagn Cytopathol 2010; 38: 235–238.

    PubMed  Google Scholar 

  9. Baum B, Georgiou M . Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 2011; 192: 907–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heuberger J, Birchmeier W . Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2: a002915.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Daniel JM . Dancing in and out of the nucleus: p120(ctn) and the transcription factor Kaiso. Biochim Biophys Acta 2007; 1773: 59–68.

    Article  CAS  PubMed  Google Scholar 

  12. Taori K, Paul VJ, Luesch H . Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 2008; 130: 1806–1807.

    Article  CAS  PubMed  Google Scholar 

  13. Ying Y, Taori K, Kim H, Hong J, Luesch H . Total synthesis and molecular target of largazole, a histone deacetylase inhibitor. J Am Chem Soc 2008; 130: 8455–8459.

    Article  CAS  PubMed  Google Scholar 

  14. Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW . Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res 1999; 59: 947–952.

    CAS  PubMed  Google Scholar 

  15. Feltes CM, Kudo A, Blaschuk O, Byers SW . An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res 2002; 62: 6688–6697.

    CAS  PubMed  Google Scholar 

  16. Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 2006; 94: 661–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M . Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 1992; 118: 703–714.

    Article  CAS  PubMed  Google Scholar 

  18. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 1993; 120: 757–766.

    Article  CAS  PubMed  Google Scholar 

  19. Hiscox S, Jiang WG . Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun 1999; 261: 406–411.

    Article  CAS  PubMed  Google Scholar 

  20. Bhatt AS, Erdjument-Bromage H, Tempst P, Craik CS, Moasser MM . Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene 2005; 24: 5333–5343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong CH, Baehner FL, Spassov DS, Ahuja D, Wang D, Hann B et al. Phosphorylation of the SRC epithelial substrate Trask is tightly regulated in normal epithelia but widespread in many human epithelial cancers. Clin Cancer Res 2009; 15: 2311–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uekita T, Tanaka M, Takigahira M, Miyazawa Y, Nakanishi Y, Kanai Y et al. CUB-domain-containing protein 1 regulates peritoneal dissemination of gastric scirrhous carcinoma. Am J Pathol 2008; 172: 1729–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Ong SE, Badu-Nkansah K, Schindler J, White FM, Hynes RO . CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci USA 2011; 108: 1379–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He Y, Wortmann A, Burke LJ, Reid JC, Adams MN, Abdul-Jabbar I et al. Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem 2010; 285: 26162–26173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown TA, Yang TM, Zaitsevskaia T, Xia Y, Dunn CA, Sigle RO et al. Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domain-containing protein 1 in epithelia. J Biol Chem 2004; 279: 14772–14783.

    Article  CAS  PubMed  Google Scholar 

  26. Casar B, He Y, Iconomou M, Hooper JD, Quigley JP, Deryugina EI . Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene 2012; 31: 3924–3938.

    Article  CAS  PubMed  Google Scholar 

  27. Benes CH, Poulogiannis G, Cantley LC, Soltoff SP . The SRC-associated protein CUB domain-containing protein-1 regulates adhesion and motility. Oncogene 2012; 31: 653–663.

    Article  CAS  PubMed  Google Scholar 

  28. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP . The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell 2005; 121: 271–280.

    Article  CAS  PubMed  Google Scholar 

  29. Singh R, Lei P, Andreadis ST . PKC-delta binds to E-cadherin and mediates EGF-induced cell scattering. Exp Cell Res 2009; 315: 2899–2913.

    Article  CAS  PubMed  Google Scholar 

  30. Busso N, Belin D, Failly-Crepin C, Vassalli JD . Glucocorticoid modulation of plasminogen activators and of one of their inhibitors in the human mammary carcinoma cell line MDA-MB-231. Cancer Res 1987; 47: 364–370.

    CAS  PubMed  Google Scholar 

  31. Nordt TK, Sawa H, Fujii S, Sobel BE . Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 1995; 91: 764–770.

    Article  CAS  PubMed  Google Scholar 

  32. Miyagawa R, Asakura T, Nakamura T, Okada H, Iwaki S, Sobel BE et al. Increased expression of plasminogen activator inhibitor type-1 (PAI-1) in HEPG2 cells induced by insulin mediated by the 3'-untranslated region of the PAI-1 gene and its pharmacologic implications. Coron Artery Dis 2010; 21: 144–150.

    Article  PubMed  Google Scholar 

  33. Ying Y, Liu Y, Byeon SR, Kim H, Luesch H, Hong J . Synthesis and activity of largazole analogues with linker and macrocycle modification. Org Lett 2008; 10: 4021–4024.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Salvador LA, Byeon S, Ying Y, Kwan JC, Law BK et al. Anticolon cancer activity of largazole, a marine-derived tunable histone deacetylase inhibitor. J Pharmacol Exp Ther 2010; 335: 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW . Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J Am Chem Soc 2011; 133: 12474–12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong AS, Gumbiner BM . Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 2003; 161: 1191–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boulos F, Fedda F . Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol 2011; 35: 154–155.

    Article  PubMed  Google Scholar 

  38. Rakha EA, Patel A, Powe DG, Benhasouna A, Green AR, Lambros MB et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol 2010; 34: 1472–1479.

    Article  PubMed  Google Scholar 

  39. Querzoli P, Coradini D, Pedriali M, Boracchi P, Ambrogi F, Raimondi E et al. An immunohistochemically positive E-cadherin status is not always predictive for a good prognosis in human breast cancer. Br J Cancer 2010; 103: 1835–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang X, Hashemi SS, Yousefi M, Gao C, Sheng J, Ni J et al. Atypical E-cadherin expression in cell clusters overlying focally disrupted mammary myoepithelial cell layers: implications for tumor cell motility and invasion. Pathol Res Pract 2009; 205: 375–385.

    Article  CAS  PubMed  Google Scholar 

  41. Rubenstein NM, Guan Y, Woo PL, Firestone GL . Glucocorticoid down-regulation of RhoA is required for the steroid-induced organization of the junctional complex and tight junction formation in rat mammary epithelial tumor cells. J Biol Chem 2003; 278: 10353–10360.

    Article  CAS  PubMed  Google Scholar 

  42. Buse P, Woo PL, Alexander DB, Reza A, Firestone GL . Glucocorticoid-induced functional polarity of growth factor responsiveness regulates tight junction dynamics in transformed mammary epithelial tumor cells. J Biol Chem 1995; 270: 28223–28227.

    Article  CAS  PubMed  Google Scholar 

  43. Zettl KS, Sjaastad MD, Riskin PM, Parry G, Machen TE, Firestone GL . Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc Natl Acad Sci USA 1992; 89: 9069–9073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wortmann A, He Y, Christensen ME, Linn M, Lumley JW, Pollock PM et al. Cellular settings mediating src substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) Tyrosine 734. J Biol Chem 2011; 286: 42303–42315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith AL, Dohn MR, Brown MV, Reynolds AB . Association of Rho-associated protein kinase 1 with E-cadherin complexes is mediated by p120-catenin. Mol Biol Cell 2012; 23: 99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis JE, Wahl JK, Sass KM, Jensen PJ, Johnson KR, Wheelock MJ . Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J Cell Biol 1997; 136: 919–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levy L, Wei Y, Labalette C, Wu Y, Renard CA, Buendia MA et al. Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol Cell Biol 2004; 24: 3404–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T . Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 2002; 277: 25562–25567.

    Article  CAS  PubMed  Google Scholar 

  49. Gomez-Hernandez J, Orozco-Alatorre AL, Dominguez-Contreras M, Oceguera-Villanueva A, Gomez-Romo S, Alvarez Villasenor AS et al. Preoperative dexamethasone reduces postoperative pain, nausea and vomiting following mastectomy for breast cancer. BMC Cancer 2010; 10: 692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan D, Kocherginsky M, Conzen SD . Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 2011; 71: 6360–6370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H . Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 2010; 28: 1684–1691.

    Article  PubMed  Google Scholar 

  52. Dawson SJ, Provenzano E, Caldas C . Triple negative breast cancers: clinical and prognostic implications. Eur J Cancer 2009; 45 (Suppl 1): 27–40.

    Article  PubMed  Google Scholar 

  53. Law BK, Chytil A, Dumont N, Hamilton EG, Waltner-Law ME, Aakre ME et al. Rapamycin potentiates transforming growth factor beta-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells. Mol Cell Biol 2002; 22: 8184–8198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Law M, Forrester E, Chytil A, Corsino P, Green G, Davis B et al. Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes. Cancer Res 2006; 66: 1070–1080.

    Article  CAS  PubMed  Google Scholar 

  55. Morgenstern JP, Land H . Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 1990; 18: 3587–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA et al. A novel role for p120 catenin in E-cadherin function. J Cell Biol 2002; 159: 465–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  59. Swift S, Lorens J, Achacoso P, Nolan GP . Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr Protoc Immunol 2001, Chapter 10: Unit 10 17C.

  60. Chytil A, Waltner-Law M, West R, Friedman D, Aakre M, Barker D et al. Construction of a cyclin D1-Cdk2 fusion protein to model the biological functions of cyclin D1-Cdk2 complexes. J Biol Chem 2004; 279: 47688–47698.

    Article  CAS  PubMed  Google Scholar 

  61. Sheffield J, Taylor N, Fauquet C, Chen S . The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics 2006; 6: 1588–1598.

    Article  CAS  PubMed  Google Scholar 

  62. Keller A, Nesvizhskii AI, Kolker E, Aebersold R . Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002; 74: 5383–5392.

    Article  CAS  PubMed  Google Scholar 

  63. Nesvizhskii AI, Keller A, Kolker E, Aebersold R . A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003; 75: 4646–4658.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu M, Simons B, Zhu N, Oppenheimer DG, Chen S . Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. J Proteomics 2010; 73: 790–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Al Reynolds, Vanderbilt University, Nashville, TN for generously providing the E-cadherin/LZRS and pMS vectors and for instruction regarding their use. The Proteomics Division at the Interdisciplinary Center for Biotechnology Research (ICBR) (http://www.biotech.ufl.edu/proteomics/) is acknowledged for the mass spectrometry analysis. This work was supported in part by Komen for the Cure grant KG080510 and Florida Department of Health grants 07BB-8 and 09BB-10 to B Law, and NIH grants R01CA138544 (H Luesch and J Hong), DK079879 (J-S Kim), and GM057242 (PJ Higgins).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B K Law.

Ethics declarations

Competing interests

Dr Luesch is co-founder of Oceanyx Pharmaceuticals, Inc., which is negotiating licenses for largazole-related patents and patent applications. He and Dr Brian Law are inventors on patent applications associated with the content of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, M., Corsino, P., Jahn, S. et al. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene 32, 1316–1329 (2013). https://doi.org/10.1038/onc.2012.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.138

Keywords

This article is cited by

Search

Quick links