Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression

Abstract

Epigenetic silencing of tumour suppressor genes is an important mechanism involved in cell transformation and tumour progression. The Set and RING-finger-associated domain-containing protein UHRF1 might be an important link between different epigenetic pathways. Here, we report that UHRF1 is frequently overexpressed in human prostate tumours and has an important role in prostate cancer pathogenesis and progression. Analysis of human prostate cancer samples by microarrays and immunohistochemistry showed increased expression of UHRF1 in about half of the cases. Moreover, UHRF1 expression was associated with reduced overall survival after prostatectomy in patients with organ-confined prostate tumours (P<0.0001). UHRF1 expression was negatively correlated with several tumour suppressor genes and positively with the histone methyltransferase (HMT) EZH2 both in prostate tumours and cell lines. UHRF1 knockdown reduced proliferation, clonogenic capability and anchorage-independent growth of prostate cancer cells. Depletion of UHRF1 resulted in reactivation of several tumour suppressor genes. Gene reactivation upon UHRF1 depletion was associated with changes in histone H3K9 methylation, acetylation and DNA methylation, and impaired binding of the H3K9 HMT Suv39H1 to the promoter of silenced genes. Co-immunoprecipitation experiments showed direct interaction between UHRF1 and Suv39H1. Our data support the notion that UHRF1, along with Suv39H1 and DNA methyltransferases, contributes to epigenetic gene silencing in prostate tumours. This could represent a parallel and convergent pathway to the H3K27 methylation catalyzed by EZH2 to synergistically promote inactivation of tumour suppressor genes. Deregulated expression of UHRF1 is involved in the prostate cancer pathogenesis and might represent a useful marker to distinguish indolent cancer from those at high risk of lethal progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Feinberg AP . The epigenetics of cancer etiology. Semin Cancer Biol 2004; 14: 427–432.

    Article  CAS  Google Scholar 

  2. Perry AS, Watson RW, Lawler M, Hollywood D . The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 2010; 7: 668–680.

    Article  CAS  Google Scholar 

  3. Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 2011; 60: 753–766.

    Article  CAS  Google Scholar 

  4. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  Google Scholar 

  5. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268–273.

    Article  CAS  Google Scholar 

  6. van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52: 455–463.

    Article  CAS  Google Scholar 

  7. Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 2010; 5: e10547.

    Article  Google Scholar 

  8. Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007; 9: 347–353.

    Article  CAS  Google Scholar 

  9. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436–439.

    Article  CAS  Google Scholar 

  10. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12: 235–246.

    Article  CAS  Google Scholar 

  11. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007; 450: 908–912.

    Article  CAS  Google Scholar 

  12. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE . UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 2007; 317: 1760–1764.

    Article  CAS  Google Scholar 

  13. Papait R, Pistore C, Negri D, Pecoraro D, Cantarini L, Bonapace IM . Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing. Mol Biol Cell 2007; 18: 1098–1106.

    Article  CAS  Google Scholar 

  14. Meilinger D, Fellinger K, Bultmann S, Rothbauer U, Bonapace IM, Klinkert WE et al. Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep 2009; 10: 1259–1264.

    Article  CAS  Google Scholar 

  15. Bonapace IM, Latella L, Papait R, Nicassio F, Sacco A, Muto M et al. Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol 2002; 157: 909–914.

    Article  CAS  Google Scholar 

  16. Kim JK, Esteve PO, Jacobsen SE, Pradhan S . UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 2008; 37: 493–505.

    Article  Google Scholar 

  17. Unoki M, Nishidate T, Nakamura Y . ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 2004; 23: 7601–7610.

    Article  CAS  Google Scholar 

  18. Papait R, Pistore C, Grazini U, Babbio F, Cogliati S, Pecoraro D et al. The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol Biol Cell 2008; 19: 3554–3563.

    Article  CAS  Google Scholar 

  19. Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R et al. Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 2004; 24: 2526–2535.

    Article  CAS  Google Scholar 

  20. Unoki M, Brunet J, Mousli M . Drug discovery targeting epigenetic codes: the great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol 2009; 78: 1279–1288.

    Article  CAS  Google Scholar 

  21. Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y, Hamamoto R . UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer 2009; 101: 98–105.

    Article  CAS  Google Scholar 

  22. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 2008; 3: e2037.

    Article  Google Scholar 

  23. Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 2007; 67: 10657–10663.

    Article  CAS  Google Scholar 

  24. Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 2008; 28: 4772–4781.

    Article  CAS  Google Scholar 

  25. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40: 741–750.

    Article  CAS  Google Scholar 

  26. Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M . The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 2007; 26: 4590–4595.

    Article  CAS  Google Scholar 

  27. Palakurthy RK, Wajapeyee N, Santra MK, Gazin C, Lin L, Gobeil S et al. Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol Cell 2009; 36: 219–230.

    Article  CAS  Google Scholar 

  28. Fujii S, Ito K, Ito Y, Ochiai A . Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 2008; 283: 17324–17332.

    Article  CAS  Google Scholar 

  29. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274–7284.

    Article  CAS  Google Scholar 

  30. Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O et al. Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol 2009; 27: 3161–3168.

    Article  CAS  Google Scholar 

  31. Pallante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F et al. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res 2008; 68: 6770–6778.

    Article  CAS  Google Scholar 

  32. Jeronimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res 2004; 10: 4010–4014.

    Article  CAS  Google Scholar 

  33. Kawano Y, Diez S, Uysal-Onganer P, Darrington RS, Waxman J, Kypta RM . Secreted frizzled-related protein-1 is a negative regulator of androgen receptor activity in prostate cancer. Br J Cancer 2009; 100: 1165–1174.

    Article  CAS  Google Scholar 

  34. Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S, Batra SK et al. Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J Biol Chem 2010; 285: 23598–23606.

    Article  CAS  Google Scholar 

  35. Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Muller SC, von Rucker A . Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur Urol 2007; 51: 665–674.

    Article  CAS  Google Scholar 

  36. Park JY, Zheng W, Kim D, Cheng JQ, Kumar N, Ahmad N et al. Candidate tumor suppressor gene SLC5A8 is frequently down-regulated by promoter hypermethylation in prostate tumor. Cancer Detect Prev 2007; 31: 359–365.

    Article  CAS  Google Scholar 

  37. Abdulkadir SA . Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1. Ann NY Acad Sci 2005; 1059: 33–40.

    Article  CAS  Google Scholar 

  38. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al. Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107: 323–337.

    Article  CAS  Google Scholar 

  39. Koizume S, Tachibana K, Sekiya T, Hirohashi S, Shiraishi M . Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res 2002; 30: 4770–4780.

    Article  CAS  Google Scholar 

  40. Yang YJ, Han JW, Youn HD, Cho EJ . The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucleic Acids Res 2010; 38: 382–390.

    Article  CAS  Google Scholar 

  41. Ke XS, Qu Y, Rostad K, Li WC, Lin B, Halvorsen OJ et al. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One 2009; 4: e4687.

    Article  Google Scholar 

  42. Cheng X, Blumenthal RM . Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 2010; 49: 2999–3008.

    Article  CAS  Google Scholar 

  43. Sewalt RG, Lachner M, Vargas M, Hamer KM, den Blaauwen JL, Hendrix T et al. Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to chromosomal targeting of Polycomb group proteins. Mol Cell Biol 2002; 22: 5539–5553.

    Article  CAS  Google Scholar 

  44. Li Q, Wang X, Lu Z, Zhang B, Guan Z, Liu Z et al. Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. PLoS One 2010; 5: e13732.

    Article  Google Scholar 

  45. van der Vlag J, Otte AP . Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 1999; 23: 474–478.

    Article  CAS  Google Scholar 

  46. Prtilo A, Leach FS, Markwalder R, Kappeler A, Burkhard FC, Cecchini MG et al. Tissue microarray analysis of hMSH2 expression predicts outcome in men with prostate cancer. J Urol 2005; 174: 1814–1818.

    Article  CAS  Google Scholar 

  47. Cangemi R, Mensah A, Albertini V, Jain A, Mello-Grand M, Chiorino G et al. Reduced expression and tumor suppressor function of the ETS transcription factor ESE-3 in prostate cancer. Oncogene 2008; 27: 2877–2885.

    Article  CAS  Google Scholar 

  48. Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, Signoretti S et al. Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res 2004; 64: 8867–8875.

    Article  CAS  Google Scholar 

  49. Napoli S, Pastori C, Magistri M, Carbone GM, Catapano CV . Promoter-specific transcriptional interference and c-myc gene silencing by siRNAs in human cells. EMBO J 2009; 28: 1708–1719.

    Article  CAS  Google Scholar 

  50. Raha T, Cheng SW, Green MR . HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol 2005; 3: e44.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Benoît Fischer, Laure Froidevaux and Amélie Weiss from the High-Throughput Screening facility (IGBMC) for their contribution to the project; Martina Mandruzzato and Giada Tamolli for their collaboration as undergraduate students; Dr Giampaolo Perletti for reviewing the manuscript and Professor Gianfranco Badaracco for constant support. Grant support: This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) project N° IG-10742 and Fondazione Cariplo ‘Progetto Nobel’ to IMB and by Oncosuisse (OCS-01913-08), the Swiss National Science Foundation (FNS-31003A-118113) and Ticino Foundation for Cancer Research to GMC, and the Fondazione Compagnia di San Paolo to GC. Further support is acknowledged from the Université de Strasbourg, Région Alsace, Conseil Général du Bas Rhin, Communauté Urbaine de Strasbourg, Cancéropôle du Grand Est, France, Institut National du Cancer (INCa) and Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G M Carbone or I M Bonapace.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babbio, F., Pistore, C., Curti, L. et al. The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene 31, 4878–4887 (2012). https://doi.org/10.1038/onc.2011.641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.641

Keywords

This article is cited by

Search

Quick links