Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition

Abstract

Trastuzumab (Herceptin) resistance is a major obstacle in the treatment of patients with HER2-positive breast cancers. We recently reported that the transcription factor Y-box binding protein-1 (YB-1) leads to acquisition of resistance to trastuzumab in a phosphorylation-dependent manner that relies on p90 ribosomal S6 kinase (RSK). To explore how this may occur we compared YB-1 target genes between trastuzumab-sensitive cells (BT474) and those with acquired resistance (HR5 and HR6) using genome-wide chromatin immunoprecipitation sequencing (ChIP-sequencing), which identified 1391 genes uniquely bound by YB-1 in the resistant cell lines. We then examined differences in protein expression and phosphorylation between these cell lines using the Kinexus Kinex antibody microarrays. Cross-referencing these two data sets identified the mitogen-activated protein kinase-interacting kinase (MNK) family as potentially being involved in acquired resistance downstream from YB-1. MNK1 and MNK2 were subsequently shown to be overexpressed in the resistant cell lines; however, only the former was a YB-1 target based on ChIP-PCR and small interfering RNA (siRNA) studies. Importantly, loss of MNK1 expression using siRNA enhanced sensitivity to trastuzumab. Further, MNK1 overexpression was sufficient to confer resistance to trastuzumab in cells that were previously sensitive. We then developed a de novo model of acquired resistance by exposing BT474 cells to trastuzumab for 60 days (BT474LT). Similar to the HR5/HR6 cells, the BT474LT cells had elevated MNK1 levels and were dependent on it for survival. In addition, we demonstrated that RSK phosphorylated MNK1, and that this phosphorylation was required for ability of MNK1 to mediate resistance to trastuzumab. Furthermore, inhibition of RSK with the small molecule BI-D1870 repressed the MNK1-mediated trastuzumab resistance. In conclusion, this unbiased integrated approach identified MNK1 as a player in mediating trastuzumab resistance as a consequence of YB-1 activation, and demonstrated RSK inhibition as a means to overcome recalcitrance to trastuzumab.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Astanehe A, Finkbeiner MR, Hojabrpour P, To K, Fotovati A, Shadeo A et al. (2009). The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. Oncogene 28: 2406–2418.

    Article  CAS  PubMed  Google Scholar 

  • Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H et al. (2007). The selectivity of protein kinase inhibitors: a further update. Biochem J 408: 297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargou RC, Jurchott K, Wagener C, Bergmann S, Metzner S, Bommert K et al. (1997). Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 3: 447–450.

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Bianchini A, Loiarro M, Bielli P, Busa R, Paronetto MP, Loreni F et al. (2008). Phosphorylation of eIF4E by MNKs supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis 29: 2279–2288.

    Article  CAS  PubMed  Google Scholar 

  • Buxade M, Morrice N, Krebs DL, Proud CG. . (2008). The PSF.p54nrb complex is a novel mnk substrate that binds the mRNA for tumor necrosis factor alpha. J Biol Chem 283: 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Buxade M, Parra JL, Rousseau S, Shpiro N, Marquez R, Morrice N et al. (2005). The mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23: 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Camirand A, Lu Y, Pollak M . (2002). Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Med Sci Monit 8: BR521–BR526.

    CAS  PubMed  Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89: 4285–4289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrestensen CA, Shuman JK, Eschenroeder A, Worthington M, Gram H, Sturgill TW . (2007). MNK1 and MNK2 regulation in HER2-overexpressing breast cancer lines. J Biol Chem 282: 4243–4252.

    Article  CAS  PubMed  Google Scholar 

  • DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D . (2006). Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 26: 1898–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AH, Barrett I, Pambid MR, Hu K, Stratford AL, Freeman S et al. (2011). YB-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and HER2 amplification. Oncogene 30: 3649–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon J, Astanehe A, Lee C, Fotovati A, Hu K, Dunn SE . (2010). The expression of activated Y-box binding protein-1 serine 102 mediates trastuzumab resistance in breast cancer cells by increasing CD44+ cells. Oncogene 29: 6294–6300.

    Article  CAS  PubMed  Google Scholar 

  • Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD . (1988). Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci USA 85: 7322–7326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G . (2005). Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB–receptor interaction and activation. Exp Cell Res 304: 604–619.

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner MR, Astanehe A, To K, Fotovati A, Davies AH, Zhao Y et al. (2009). Profiling YB-1 target genes uncovers a new mechanism for MET receptor regulation in normal and malignant human mammary cells. Oncogene 28: 1421–1431.

    Article  CAS  PubMed  Google Scholar 

  • Foster FM, Owens TW, Tanianis-Hughes J, Clarke RB, Brennan K, Bundred NJ et al. (2009). Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res 11: R41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukunaga R, Hunter T . (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16: 1921–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzmil M, Morin Jr P, Lino MM, Merlo A, Frank S, Wang Y et al. (2011). MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma. Cancer Res 71: 2392–2402.

    Article  CAS  PubMed  Google Scholar 

  • Guil S, Long JC, Caceres JF . (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 26: 5744–5758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi G, Leung S, Law JH, Gelmon K, Masoudi H, Turbin D et al. (2008). Re-defining prognostic factors for breast cancer: YB-1 is a stronger predictor of relapse and disease specific survival than estrogen receptor or HER-2 across all tumor subtypes. Breast Cancer Res 10: R86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halatsch ME, Low S, Mursch K, Hielscher T, Schmidt U, Unterberg A et al. (2009). Candidate genes for sensitivity and resistance of human glioblastoma multiforme cell lines to erlotinib. Laboratory investigation. J Neurosurg 111: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D et al. (2000). Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 275: 37542–37551.

    Article  CAS  PubMed  Google Scholar 

  • Henson ES, Hu X, Gibson SB . (2006). Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic mcl-1 expression. Clin Cancer Res 12: 845–853.

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Huang J, Dalle S, Ugi S, Usui I, Luttrell LM et al. (2001). Beta-arrestin-mediated recruitment of the src family kinase yes mediates endothelin-1-stimulated glucose transport. J Biol Chem 276: 43663–43667.

    Article  CAS  PubMed  Google Scholar 

  • Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A et al. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS et al. (2009). Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M . (2001). Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93: 1852–1857.

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam M, Cooper JA . (2001). Phosphorylation of mammalian eIF4E by Mnk1 and Mnk2: tantalizing prospects for a role in translation. Prog Mol Subcell Biol 27: 132–142.

    CAS  PubMed  Google Scholar 

  • Martin AP, Miller A, Emad L, Rahmani M, Walker T, Mitchell C et al. (2008). Lapatinib resistance in HCT116 cells is mediated by elevated MCL-1 expression and decreased BAK activation and not by ERBB receptor kinase mutation. Mol Pharmacol 74: 807–822.

    Article  CAS  PubMed  Google Scholar 

  • Motoyama AB, Hynes NE, Lane HA . (2002). The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 62: 3151–3158.

    CAS  PubMed  Google Scholar 

  • Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Esteva FJ . (2006). HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8: 215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ . (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: 11118–11128.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL . (2008). Targeting RSK: an overview of small molecule inhibitors. Anticancer Agents Med Chem 8: 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  • Seshadri R, Firgaira FA, Horsfall DJ, McCaul K, Setlur V, Kitchen P . (1993). Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The south Australian breast cancer study group. J Clin Oncol 11: 1936–1942.

    Article  CAS  PubMed  Google Scholar 

  • Shattuck DL, Miller JK, Carraway III KL, Sweeney C . (2008). Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68: 1471–1477.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA . (2005). Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 65: 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Stratford AL, Fry CJ, Desilets C, Davies AH, Cho YY, Li Y et al. (2008). Y-box binding protein-1 (YB-1) serine 102 is a downstream target of p90 ribosomal S6 kinase (RSK) in basal-like breast cancer cells. Breast Cancer Res 10: R99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland BW, Kucab J, Wu J, Lee C, Cheang MC, Yorida E et al. (2005). Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 24: 4281–4292.

    Article  CAS  PubMed  Google Scholar 

  • To K, Fotovati A, Reipas KM, Law JH, Hu K, Wang J et al. (2010). Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res 70: 2840–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treeck O, Zhou R, Diedrich K, Ortmann O . (2004). Tamoxifen long-term treatment in vitro alters the apoptotic response of MCF-7 breast cancer cells. Anticancer Drugs 15: 787–793.

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R et al. (2010). Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA 107: 13984–13990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R . (2004). Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24: 6539–6549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . (1997). Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16: 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. (2007). Dissecting eIF4E action in tumorigenesis. Genes Dev 21: 3232–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Lee C, Yokom D, Jiang H, Cheang MC, Yorida E et al. (2006). Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res 66: 4872–4879.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW et al. (2011). Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 17: 461–469.

    Article  PubMed  Google Scholar 

  • Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S et al. (2010). Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 70: 299–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institute of Health Research (SED), the Canadian Cancer Research Institute (formerly National Cancer Institute of Canada (SED)) and RO1 CA114017 (IMB and SED). AA was a recipient of the Canadian Institute of Health Research MD/PhD and the Michael Smith Foundation for Health Research (MSFHR) Studentships. MAM is a scholar of MSFHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Dunn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astanehe, A., Finkbeiner, M., Krzywinski, M. et al. MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition. Oncogene 31, 4434–4446 (2012). https://doi.org/10.1038/onc.2011.617

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.617

Keywords

This article is cited by

Search

Quick links