Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolyl-4-hydroxylase PHD2- and hypoxia-inducible factor 2-dependent regulation of amphiregulin contributes to breast tumorigenesis

Abstract

Hypoxia-elicited adaptations of tumor cells are essential for tumor growth and cancer progression. Although ample evidence exists for a positive correlation between hypoxia-inducible factors (HIFs) and tumor formation, metastasis and bad prognosis, the function of the HIF-α protein stability regulating prolyl-4-hydroxylase domain enzyme PHD2 in carcinogenesis is less well understood. In this study, we demonstrate that downregulation of PHD2 leads to increased tumor growth in a hormone-dependent mammary carcinoma mouse model. Tissue microarray analysis of PHD2 protein expression in 281 clinical samples of human breast cancer showed significantly shorter survival times of patients with low-level PHD2 tumors over a period of 10 years. An angiogenesis-related antibody array identified, amongst others, amphiregulin to be increased in the absence of PHD2 and normalized after PHD2 reconstitution. Cultivation of endothelial cells in conditioned media derived from PHD2-downregulated cells resulted in enhanced tube formation that was blocked by the addition of neutralizing anti-amphiregulin antibodies. Functionally, amphiregulin was regulated on the transcriptional level specifically by HIF-2 but not HIF-1. Our data suggest that PHD2/HIF-2/amphiregulin signaling has a critical role in the regulation of breast tumor progression and propose PHD2 as a potential tumor suppressor in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH et al. (2001). Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61: 2911–2916.

    CAS  PubMed  Google Scholar 

  • Balamurugan K, Luu VD, Kaufmann MR, Hofmann VS, Boysen G, Barth S et al. (2009). Onconeuronal cerebellar degeneration-related antigen, Cdr2, is strongly expressed in papillary renal cell carcinoma and leads to attenuated hypoxic response. Oncogene 28: 3274–3285.

    Article  CAS  PubMed  Google Scholar 

  • Barnard JA, Graves-Deal R, Pittelkow MR, DuBois R, Cook P, Ramsey GW et al. (1994). Auto- and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 269: 22817–22822.

    CAS  PubMed  Google Scholar 

  • Barth S, Nesper J, Hasgall PA, Wirthner R, Nytko KJ, Edlich F et al. (2007). The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol Cell Biol 27: 3758–3768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Wilson WR . (2004). Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK, McKnight SL . (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Camenisch G, Tini M, Chilov D, Kvietikova I, Srinivas V, Caro J et al. (1999). General applicability of chicken egg yolk antibodies: the performance of IgY immunoglobulins raised against the hypoxia-inducible factor 1α. FASEB J 13: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ . (2009). Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15: 527–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chokki M, Mitsuhashi H, Kamimura T . (2006). Metalloprotease-dependent amphiregulin release mediates tumor necrosis factor-alpha-induced IL-8 secretion in the human airway epithelial cell line NCI-H292. Life Sci 78: 3051–3057.

    Article  CAS  PubMed  Google Scholar 

  • Couvelard A, Deschamps L, Rebours V, Sauvanet A, Gatter K, Pezzella F et al. (2008). Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH Is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res 14: 6634–6639.

    Article  CAS  PubMed  Google Scholar 

  • Elston EW, Ellis IO . (1993). Method for grading breast cancer. J Clin Pathol 46: 189–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Erez N, Milyavsky M, Eilam R, Shats I, Goldfinger N, Rotter V . (2003). Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1α activation and inhibits tumor growth. Cancer Res 63: 8777–8783.

    CAS  PubMed  Google Scholar 

  • Franovic A, Holterman CE, Payette J, Lee S . (2009). Human cancers converge at the HIF-2α oncogenic axis. Proc Natl Acad Sci USA 106: 21306–21311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giusti C, Desruisseau S, Ma L, Calvo F, Martin PM, Berthois Y . (2003). Transforming growth factor beta-1 and amphiregulin act in synergy to increase the production of urokinase-type plasminogen activator in transformed breast epithelial cells. Int J Cancer 105: 769–778.

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K et al. (2002). Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99: 13459–13464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. (2001). Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Jokilehto T, Rantanen K, Luukkaa M, Heikkinen P, Grenman R, Minn H et al. (2006). Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness. Clin Cancer Res 12: 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Inoue T, Asanoma K, Nishimura C, Matsuda T, Wake N . (2006). Induction of human endometrial cancer cell senescence through modulation of HIF-1α activity by EGLN1. Int J Cancer 118: 1144–1153.

    Article  CAS  PubMed  Google Scholar 

  • Lamber EP, Horwitz AA, Parvin JD . (2010). BRCA1 represses amphiregulin gene expression. Cancer Res 70: 996–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bras A, Lionneton F, Mattot V, Lelievre E, Caetano B, Spruyt N et al. (2007). HIF-2α specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26: 7480–7489.

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Lynd JD, O'Reilly S, Kiupel M, McCormick JJ, LaPres JJ . (2008). The biphasic role of the hypoxia-inducible factor prolyl-4-hydroxylase, PHD2, in modulating tumor-forming potential. Mol Cancer Res 6: 829–842.

    Article  CAS  Google Scholar 

  • Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP et al. (2005). Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8: 155–167.

    Article  PubMed  Google Scholar 

  • Lee SB, Huang K, Palmer R, Truong VB, Herzlinger D, Kolquist KA et al. (1999). The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98: 663–673.

    Article  CAS  PubMed  Google Scholar 

  • Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A et al. (1999). Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126: 2739–2750.

    CAS  PubMed  Google Scholar 

  • Ma L, Gauville C, Berthois Y, Millot G, Johnson GR, Calvo F . (1999). Antisense expression for amphiregulin suppresses tumorigenicity of a transformed human breast epithelial cell line. Oncogene 18: 6513–6520.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS et al. (1995). Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology 136: 3983–3992.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B et al. (2009). Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136: 839–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBryan J, Howlin J, Napoletano S, Martin F . (2008). Amphiregulin: role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 13: 159–169.

    Article  PubMed  Google Scholar 

  • Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig-Bürgel T, Jelkmann W . (2005). Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387: 711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Reilly SM, Leonard MO, Kieran N, Comerford KM, Cummins E, Pouliot M et al. (2006). Hypoxia induces epithelial amphiregulin gene expression in a CREB-dependent manner. Am J Physiol Cell Physiol 290: C592–C600.

    Article  CAS  PubMed  Google Scholar 

  • Panico L, D'Antonio A, Salvatore G, Mezza E, Tortora G, De Laurentiis M et al. (1996). Differential immunohistochemical detection of transforming growth factor α, amphiregulin and CRIPTO in human normal and malignant breast tissues. Int J Cancer 65: 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Plowman GD, Green JM, McDonald VL, Neubauer MG, Disteche CM, Todaro GJ et al. (1990). The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol 10: 1969–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouysségur J, Dayan F, Mazure NM . (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437–443.

    Article  PubMed  Google Scholar 

  • Qi CF, Liscia DS, Normanno N, Merlo G, Johnson GR, Gullick WJ et al. (1994). Expression of transforming growth factor α, amphiregulin and cripto-1 in human breast carcinomas. Br J Cancer 69: 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Shoyab M, McDonald VL, Bradley JG, Todaro GJ . (1988). Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 85: 6528–6532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiehl DP, Wirthner R, Koditz J, Spielmann P, Camenisch G, Wenger RH . (2006). Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281: 23482–23491.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Cowan A, Fong GH . (2007). Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116: 774–781.

    Article  CAS  PubMed  Google Scholar 

  • Theurillat JP, Ingold F, Frei C, Zippelius A, Varga Z, Seifert B et al. (2007). NY-ESO-1 protein expression in primary breast carcinoma and metastases: correlation with CD8+ T-cell and CD79a+ plasmacytic/B-cell infiltration. Int J Cancer 120: 2411–2417.

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar GT, ter Horst SA, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA et al. (2004). Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 36: 782–801.

    Article  CAS  PubMed  Google Scholar 

  • Wanner RM, Spielmann P, Stroka DM, Camenisch G, Camenisch I, Scheid A et al. (2000). Epolones induce erythropoietin expression via hypoxia-inducible factor-1α activation. Blood 96: 1558–1565.

    CAS  PubMed  Google Scholar 

  • Warnecke C, Griethe W, Weidemann A, Jurgensen JS, Willam C, Bachmann S et al. (2003). Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 17: 1186–1188.

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH . (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16: 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH, Stiehl DP, Camenisch G . (2005). Integration of oxygen signaling at the consensus HRE. Sci STKE 306: re12.

    Google Scholar 

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92: 2260–2268.

    CAS  PubMed  Google Scholar 

  • Willmarth NE, Ethier SP . (2008). Amphiregulin as a novel target for breast cancer therapy. J Mammary Gland Biol Neoplasia 13: 171–179.

    Article  PubMed  Google Scholar 

  • Wu S, Nishiyama N, Kano MR, Morishita Y, Miyazono K, Itaka K et al. (2008). Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 by silencing prolyl hydroxylase domain-2 gene. Mol Ther 16: 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Li X, Jiao S, Wei Y, Wu G, Fang J . (2010). Prolyl hydroxylase-3 is downregulated in colorectal cancer cells and inhibits IκKβ, independent of hydroxylase activity. Gastroenterology 138: 606–615.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Gu J, Li L, Liu J, Luo B, Cheung HW et al. (2009). Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell 16: 413–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al. (1999). Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59: 5830–5835.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P Spielmann for excellent technical assistance, K Wollenick, TF Lüscher, PJ Ratcliffe (University of Oxford, Oxford, UK), SB Lee (National Institutes of Health, Bethesda, MD, USA), DA Chan (University of California, San Francisco, CA, USA) for gifts of antibodies, cells and plasmids and D Neri (Institute of Pharmaceutical Sciences, ETH Zürich, Switzerland) for helpful discussions. This work was supported by the Swiss National Science Foundation and Krebsliga des Kantons Zürich (GC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Wenger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordoli, M., Stiehl, D., Borsig, L. et al. Prolyl-4-hydroxylase PHD2- and hypoxia-inducible factor 2-dependent regulation of amphiregulin contributes to breast tumorigenesis. Oncogene 30, 548–560 (2011). https://doi.org/10.1038/onc.2010.433

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.433

Keywords

This article is cited by

Search

Quick links