Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Artemin is oncogenic for human mammary carcinoma cells

Abstract

We report that artemin, a member of the glial cell line-derived neurotrophic factor family of ligands, is oncogenic for human mammary carcinoma. Artemin is expressed in numerous human mammary carcinoma cell lines. Forced expression of artemin in mammary carcinoma cells results in increased anchorage-independent growth, increased colony formation in soft agar and in three-dimensional Matrigel, and also promotes a scattered cell phenotype with enhanced migration and invasion. Moreover, forced expression of artemin increases tumor size in xenograft models and leads to highly proliferative, poorly differentiated and invasive tumors. Expression data in Oncomine indicate that high artemin expression is significantly associated with residual disease after chemotherapy, metastasis, relapse and death. Artemin protein is detectable in 65% of mammary carcinoma and its expression correlates to decreased overall survival in the cohort of patients. Depletion of endogenous artemin with small interfering RNA, or antibody inhibition of artemin, decreases the oncogenicity and invasiveness of mammary carcinoma cells. Artemin is therefore oncogenic for human mammary carcinoma, and targeted therapeutic approaches to inhibit artemin function in mammary carcinoma warrant consideration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

BrdU:

bromodeoxyuridine

EGFP:

enhanced green fluorescent protein

ER:

estrogen receptor

GDNF:

glial –cell line-derived neurotrophic factor

GFL:

GDNF family ligand

GFRα:

GDNF family receptor α

PR:

progesterone receptor

RT:

reverse transcription

siRNA:

small interfering RNA

TUNEL:

terminal doxynucleotidyl transferase-mediated dUTP nick end labeling

References

  • Airaksinen MS, Saarma M . (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383–394.

    Article  CAS  Google Scholar 

  • Airaksinen MS, Titievsky A, Saarma M . (1999). GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13: 313–325.

    Article  CAS  Google Scholar 

  • Anderson J, Ramsay A, Gould S, Pritchard-Jones K . (2001). PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 159: 1089–1096.

    Article  CAS  Google Scholar 

  • Bespalov MM, Saarma M . (2007). GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 28: 68–74.

    Article  CAS  Google Scholar 

  • Brouty-Boye D, Raux H . (1993). Differential influence of stromal fibroblasts from different breast tissues on human breast tumour cell growth in nude mice. Anticancer Res 13: 1087–1090.

    CAS  PubMed  Google Scholar 

  • Ceyhan GO, Bergmann F, Kadihasanoglu M, Erkan M, Park W, Hinz U et al. (2007). The neurotrophic factor artemin influences the extent of neural damage and growth in chronic pancreatitis. Gut 56: 534–544.

    Article  CAS  Google Scholar 

  • Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN, Giese T et al. (2006). The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg 244: 274–281.

    Article  Google Scholar 

  • Chung LW . (1993). Implications of stromal-epithelial interaction in human prostate cancer growth, progression and differentiation. Semin Cancer Biol 4: 183–192.

    CAS  PubMed  Google Scholar 

  • Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE . (2004). Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann Surg 240: 667–674.

    PubMed  PubMed Central  Google Scholar 

  • Enomoto H, Hughes I, Golden J, Baloh RH, Yonemura S, Heuckeroth RO et al. (2004). GFRα1 expression in cells lacking RET is dispensable for organogenesis and nerve regeneration. Neuron 44: 623–636.

    Article  CAS  Google Scholar 

  • Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS et al. (2007). A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFRα1 receptor up-regulation in breast cancer. Cancer Res 67: 11732–11741.

    Article  CAS  Google Scholar 

  • Hutcheson IR, Knowlden JM, Jones HE, Burmi RS, McClelland RA, Barrow D et al. (2006). Inductive mechanisms limiting response to anti-epidermal growth factor receptor therapy. Endocr Relat Cancer 13 (Suppl 1): S89–S97.

    Article  CAS  Google Scholar 

  • Ichihara M, Murakumo Y, Takahashi M . (2004). RET and neuroendocrine tumors. Cancer Lett 204: 197–211.

    Article  CAS  Google Scholar 

  • Ito Y, Okada Y, Sato M, Sawai H, Funahashi H, Murase T et al. (2005). Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138: 788–794.

    Article  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F . (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.

    Article  CAS  Google Scholar 

  • Liu DX, Lobie PE . (2007). Transcriptional activation of p53 by Pitx1. Cell Death Differ 14: 1893–1907.

    Article  CAS  Google Scholar 

  • Lubaroff DM, Canfield L, Reynolds CW . (1980). The Dunning tumors. Prog Clin Biol Res 37: 243–263.

    CAS  PubMed  Google Scholar 

  • Masure S, Geerts H, Cik M, Hoefnagel E, Van Den KG, Tuytelaars A et al. (1999). Enovin, a member of the glial cell-line-derived neurotrophic factor (GDNF) family with growth promoting activity on neuronal cells. Existence and tissue-specific expression of different splice variants. Eur J Biochem 266: 892–902.

    Article  CAS  Google Scholar 

  • Meng X, de Rooij DG, Westerdahl K, Saarma M, Sariola H . (2001a). Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res 61: 3267–3271.

    CAS  PubMed  Google Scholar 

  • Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW et al. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287: 1489–1493.

    Article  CAS  Google Scholar 

  • Meng X, Pata I, Pedrono E, Popsueva A, de Rooij DG, Janne M et al. (2001b). Transient disruption of spermatogenesis by deregulated expression of neurturin in testis. Mol Cell Endocrinol 184: 33–39.

    Article  CAS  Google Scholar 

  • Okada Y, Takeyama H, Sato M, Morikawa M, Sobue K, Asai K et al. (1999). Experimental implication of celiac ganglionotropic invasion of pancreatic-cancer cells bearing c-ret proto-oncogene with reference to glial-cell-line-derived neurotrophic factor (GDNF). Int J Cancer 81: 67–73.

    Article  CAS  Google Scholar 

  • Pandey V, Perry JK, Mohankumar KM, Kong XJ, Liu SM, Wu ZS et al. (2008). Autocrine human growth hormone stimulates oncogenicity of endometrial carcinoma cells. Endocrinology 149: 3909–3919.

    Article  CAS  Google Scholar 

  • Paratcha G, Ledda F, Ibanez CF . (2003). The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113: 867–879.

    Article  CAS  Google Scholar 

  • Pasini B, Ceccherini I, Romeo G . (1996). RET mutations in human disease. Trends Genet 12: 138–144.

    Article  CAS  Google Scholar 

  • Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ et al. (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 2: 1627–1636.

    CAS  PubMed  Google Scholar 

  • Popsueva A, Poteryaev D, Arighi E, Meng X, ngers-Loustau A, Kaplan D et al. (2003). GDNF promotes tubulogenesis of GFRα1-expressing MDCK cells by Src-mediated phosphorylation of Met receptor tyrosine kinase. J Cell Biol 161: 119–129.

    Article  CAS  Google Scholar 

  • Poteryaev D, Titievsky A, Sun YF, Thomas-Crusells J, Lindahl M, Billaud M et al. (1999). GDNF triggers a novel ret-independent Src kinase family-coupled signaling via a GPI-linked GDNF receptor α1. FEBS Lett 463: 63–66.

    Article  CAS  Google Scholar 

  • Saarma M, Sariola H . (1999). Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 45: 292–302.

    Article  CAS  Google Scholar 

  • Sadlonova A, Novak Z, Johnson MR, Bowe DB, Gault SR, Page GP et al. (2005). Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res 7: R46–R59.

    Article  Google Scholar 

  • Sariola H, Saarma M . (2003). Novel functions and signalling pathways for GDNF. J Cell Sci 116: 3855–3862.

    Article  CAS  Google Scholar 

  • Schueler-Furman O, Glick E, Segovia J, Linial M . (2006). Is GAS1 a co-receptor for the GDNF family of ligands? Trends Pharmacol Sci 27: 72–77.

    Article  CAS  Google Scholar 

  • Singh S, Sadanandam A, Singh RK . (2007). Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev 26: 453–467.

    Article  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  Google Scholar 

  • Su G, Blaine SA, Qiao D, Friedl A . (2007). Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem 282: 14906–14915.

    Article  CAS  Google Scholar 

  • Takahashi M . (2001). The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 12: 361–373.

    Article  CAS  Google Scholar 

  • Trupp M, Scott R, Whittemore SR, Ibanez CF . (1999). Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 274: 20885–20894.

    Article  CAS  Google Scholar 

  • Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P et al. (2004). Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 64: 5291–5300.

    Article  CAS  Google Scholar 

  • Wu K, Weng Z, Tao Q, Lin G, Wu X, Qian H et al. (2003). Stage-specific expression of breast cancer-specific gene γ-synuclein. Cancer Epidemiol Biomarkers Prev 12: 920–925.

    CAS  PubMed  Google Scholar 

  • Zhang P, Chan SL, Fu W, Mendoza M, Mattson MP . (2003). TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein-binding ability. FASEB J 17: 767–769.

    Article  CAS  Google Scholar 

  • Zhu T, Starling-Emerald B, Zhang X, Lee KO, Gluckman PD, Mertani HC et al. (2005). Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res 65: 317–324.

    CAS  Google Scholar 

  • Zhu ZW, Friess H, Wang L, Bogardus T, Korc M, Kleeff J et al. (2001). Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res 7: 105–112.

    CAS  PubMed  Google Scholar 

  • Zinkel S, Gross A, Yang E . (2006). BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13: 1351–1359.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alan Beedle for critical reading of the manuscript. This work was funded by the Breast Cancer Research Trust (NZ), the Foundation for Research, Science and Technology of New Zealand, the Hundred-Talent Scheme of Chinese Academy of Sciences, the National Natural Science Foundation of China (2007CB914801 & 2007CB914503) and the National Basic Research Program of China (30571030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P E Lobie.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Perry, J., Pandey, V. et al. Artemin is oncogenic for human mammary carcinoma cells. Oncogene 28, 2034–2045 (2009). https://doi.org/10.1038/onc.2009.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.66

Keywords

This article is cited by

Search

Quick links