Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A role for candidate tumor-suppressor gene TCEAL7 in the regulation of c-Myc activity, cyclin D1 levels and cellular transformation

Abstract

The pathophysiological mechanisms that drive the development and progression of epithelial ovarian cancer remain obscure. Recently, we identified TCEAL7 as a transcriptional regulatory protein often downregulated in epithelial ovarian cancer. However, the biological significance of such downregulation in cancer is not currently known. Here, we show that TCEAL7 is downregulated frequently in many human cancers and that in immortalized human ovarian epithelial cells this event promotes anchorage-independent cell growth. Mechanistic investigations revealed that TCEAL7 associates with cyclin D1 promoter containing Myc E-box sequence and transcriptionally represses cyclin D1 expression. Moreover, downregulation of TCEAL7 promotes DNA-binding activity of Myc-Max, and upregulates the promoter activity of c-Myc-target gene, ornithine decarboxylase (ODC), whereas enhanced expression of TCEAL7 inhibits Myc-induced promoter activity of ODC. Our findings suggest that TCEAL7 may restrict ovarian epithelial cell transformation by limiting Myc activity. These results also suggest a potential, alternative mechanism by which c-Myc activity may be deregulated in cancer by the downregulation of TCEAL7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baudino TA, Cleveland JL . (2001). The Max network gone mad. Mol Cell Biol 21: 691–702.

    Article  CAS  Google Scholar 

  • Bell DA . (2005). Origins and molecular pathology of ovarian cancer. Mod Pathol 18 (Suppl 2): S19–S32.

    Article  CAS  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428: 431–437.

    Article  CAS  Google Scholar 

  • Budhram-Mahadeo VS, Latchman DS . (2006). Targeting Brn-3b in breast cancer therapy. Expert Opin Ther Targets 10: 15–25.

    Article  CAS  Google Scholar 

  • Chien J, Aletti G, Baldi A, Catalano V, Muretto P, Keeney GL et al. (2006). Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J Clin Invest 116: 1994–2004.

    Article  CAS  Google Scholar 

  • Chien J, Staub J, Avula R, Zhang H, Liu W, Hartmann LC et al. (2005). Epigenetic silencing of TCEAL7 (Bex4) in ovarian cancer. Oncogene 24: 5089–5100.

    Article  CAS  Google Scholar 

  • Chien J, Staub J, Hu SI, Erickson-Johnson MR, Couch FJ, Smith DI et al. (2004). A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 23: 1636–1644.

    Article  CAS  Google Scholar 

  • Chien J, Wong E, Nikes E, Noble MJ, Pantazis CG, Shah GV . (1999). Constitutive activation of stimulatory guanine nucleotide binding protein (G(S)alphaQL)-mediated signaling increases invasiveness and tumorigenicity of PC-3M prostate cancer cells. Oncogene 18: 3376–3382.

    Article  CAS  Google Scholar 

  • Conover CA, Hartmann LC, Bradley S, Stalboerger P, Klee GG, Kalli KR et al. (1998). Biological characterization of human epithelial ovarian carcinoma cells in primary culture: the insulin-like growth factor system. Exp Cell Res 238: 439–449.

    Article  CAS  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM . (1982). Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824–7827.

    Article  CAS  Google Scholar 

  • Elliott K, Sakamuro D, Basu A, Du W, Wunner W, Staller P et al. (1999). Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 18: 3564–3573.

    Article  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  CAS  Google Scholar 

  • Fukumoto M, Nakayama K . (2006). Ovarian epithelial tumors of low malignant potential: are they precursors of ovarian carcinoma? Pathol Int 56: 233–239.

    Article  CAS  Google Scholar 

  • Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54: 1812–1817.

    CAS  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massague J . (2006). C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10: 203–214.

    Article  CAS  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16: 653–699.

    Article  CAS  Google Scholar 

  • Hall M, Peters G . (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 68: 67–108.

    Article  CAS  Google Scholar 

  • Jeon C, Agarwal K . (1996). Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc Natl Acad Sci USA 93: 13677–13682.

    Article  CAS  Google Scholar 

  • Kalli KR, Falowo OI, Bale LK, Zschunke MA, Roche PC, Conover CA . (2002). Functional insulin receptors on human epithelial ovarian carcinoma cells: implications for IGF-II mitogenic signaling. Endocrinology 143: 3259–3267.

    Article  CAS  Google Scholar 

  • Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS et al. (2003). A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114: 323–334.

    Article  CAS  Google Scholar 

  • Massague J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes & Development 19: 2783–2810.

    Article  CAS  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV . (1999). MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016.

    Article  CAS  Google Scholar 

  • Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA et al. (2005). Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7: 433–444.

    Article  CAS  Google Scholar 

  • Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T et al. (2003). Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 17: 1101–1114.

    Article  CAS  Google Scholar 

  • Oster SK, Ho CS, Soucie EL, Penn LZ . (2002). The myc oncogene: MarvelouslY complex. Adv Cancer Res 84: 81–154.

    Article  CAS  Google Scholar 

  • Shridhar V, Lee J, Pandita A, Iturria S, Avula R, Staub J et al. (2001). Genetic analysis of early- versus late-stage ovarian tumors. Cancer Res 61: 5895–5904.

    CAS  PubMed  Google Scholar 

  • Shridhar V, Sen A, Chien J, Staub J, Avula R, Kovats S et al. (2002). Identification of underexpressed genes in early- and late-stage primary ovarian tumors by suppression subtraction hybridization. Cancer Res 62: 262–270.

    CAS  PubMed  Google Scholar 

  • Staub J, Chien J, Pan Y, Qian X, Narita K, Aletti G et al. (2007). Epigenetic silencing of HSulf-1 in ovarian cancer: implications in chemoresistance. Oncogene 26: 4969–4978.

    Article  CAS  Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S et al. (1982). Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79: 7837–7841.

    Article  CAS  Google Scholar 

  • Thomas MJ, Platas AA, Hawley DK . (1998). Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93: 627–637.

    Article  CAS  Google Scholar 

  • Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B et al. (2005). A genetic screen for candidate tumor suppressors identifies REST. Cell 121: 837–848.

    Article  CAS  Google Scholar 

  • Yeh CH, Shatkin AJ . (1995). A cis-acting element in Rous sarcoma virus long terminal repeat required for promoter repression by HeLa nuclear protein p21. J Biol Chem 270: 15815–15820.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Fraternal Order of Eagle to VS, by Department of Defense OCRP W81XWH-04-1-0085 to VS, and by Edith and Bernie Waterman Foundation and the Mayo Foundation to VS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Shridhar.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, J., Narita, K., Rattan, R. et al. A role for candidate tumor-suppressor gene TCEAL7 in the regulation of c-Myc activity, cyclin D1 levels and cellular transformation. Oncogene 27, 7223–7234 (2008). https://doi.org/10.1038/onc.2008.360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.360

Keywords

This article is cited by

Search

Quick links