Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-β signaling

Abstract

Insulin-like growth factor-binding protein 7 (IGFBP7) is a selective biomarker of glioblastoma (GBM) vessels, strongly expressed in tumor endothelial cells and vascular basement membrane. IGFBP7 gene regulation and its potential role in tumor angiogenesis remain unclear. Mechanisms of IGFBP7 induction and its angiogenic capacity were examined in human brain endothelial cells (HBECs) exposed to tumor-like conditions. HBEC treated with GBM cell (U87MG)-conditioned media (-CM) exhibited fourfold upregulation of IGFBP7 mRNA and protein compared to control cells. IGFBP7 gene regulation in HBEC was methylation independent. U87MG-CM analysed by enzyme-linked immunosorbent assay contained 5 pM transforming growth factor (TGF)-β1, a concentration sufficient to stimulate IGFBP7 in HBEC to similar levels as U87MG-CM. Both pan-TGF-β-neutralizing antibody (1D11) and the TGF-β1 receptor (activin receptor-like kinase 5, ALK5) antagonist, SB431542, blocked U87MG-CM-induced IGFBP7 expression in HBEC, indicating that TGF-β1 is an important tumor-secreted effector capable of IGFBP7 induction in endothelial cells. HBEC exposed to either U87MG-CM or IGFBP7 protein exhibited increased capillary-like tube (CLT) formation in Matrigel. Both TGF-β1- and U87MG-CM-induced Smad-2 phosphorylation and U87MG-CM-induced CLT formation in HBEC were inhibited by the ALK5 antagonist, SB431542. These data suggest that proangiogenic IGFBP7 may be induced in brain endothelial cells by TGF-βs secreted by GBM, most likely through TGF-β1/ALK5/Smad-2 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahmed S, Jin X, Yagi M, Yasuda C, Sato Y, Higashi S et al. (2006). Identification of membrane-bound serine proteinase matriptase as processing enzyme of insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1/angiomodulin/mac25). FEBS J 273: 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Akaogi K, Okabe Y, Funahashi K, Yoshitake Y, Nishikawa K, Yasumitsu H et al. (1994). Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun 198: 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  • Akaogi K, Okabe Y, Sato J, Nagashima Y, Yasumitsu H, Sugahara K et al. (1996). Specific accumulation of tumor-derived adhesion factor in tumor blood vessels and in capillary tube-like structures of cultured vascular endothelial cells. Proc Natl Acad Sci USA 93: 8384–8389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaty RM, Edwards JB, Boon K, Siu IM, Conway JE, Riggins GJ . (2007). PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium. J Neurooncol 81: 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Blanchette F, Rivard N, Rudd P, Grondin F, Attisano L, Dubois CM . (2001). Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gene transactivation. J Biol Chem 276: 33986–33994.

    Article  CAS  PubMed  Google Scholar 

  • Burger AM, Zhang X, Li H, Ostrowski JL, Beatty B, Venanzoni M et al. (1998). Down-regulation of T1A12/mac25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene 16: 2459–2467.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Pacyna-Gengelbach M, Ye F, Knosel T, Lund P, Deutschmann N et al. (2007). Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has potential tumour-suppressive activity in human lung cancer. J Pathol 211: 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Chen YG, Massague J . (1999). Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors. J Biol Chem 274: 3672–3677.

    Article  CAS  PubMed  Google Scholar 

  • Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A . (1992). Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148: 1404–1410.

    CAS  PubMed  Google Scholar 

  • Dai C, Holland EC . (2001). Glioma models. Biochim Biophys Acta 1551: M19–M27.

    CAS  PubMed  Google Scholar 

  • Davies DC . (2002). Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200: 639–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Caestecker M . (2004). The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker PR . (2005). Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem 280: 6257–6260.

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Zhang Y, Feng XH . (1998). Smads: transcriptional activators of TGF-beta responses. Cell 95: 737–740.

    Article  CAS  PubMed  Google Scholar 

  • Dinda AK, Sarkar C, Roy S, Kharbanda K, Mathur M, Khosla AK et al. (1993). A transmission and scanning electron microscopic study of tumoral and peritumoral microblood vessels in human gliomas. J Neurooncol 16: 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Durocher Y, Perret S, Kamen A . (2002). High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30: E9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel ME, McDonnell MA, Law BK, Moses HL . (1999). Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274: 37413–37420.

    Article  CAS  PubMed  Google Scholar 

  • Goumans MJ, Lebrin F, Valdimarsdottir G . (2003). Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13: 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P . (2002). Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21: 1743–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata Y, Clermont A, Yamauchi T, Pierce EA, Suzuma I, Kagokawa H et al. (2000). Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor. J Clin Invest 106: 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano A, Matsui T . (1975). Vascular structures in brain tumors. Hum Pathol 6: 611–621.

    Article  CAS  PubMed  Google Scholar 

  • Hwa V, Oh Y, Rosenfeld RG . (1999). The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20: 761–787.

    CAS  PubMed  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62: 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Keeton MR, Curriden SA, van Zonneveld AJ, Loskutoff DJ . (1991). Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 266: 23048–23052.

    CAS  PubMed  Google Scholar 

  • Kishibe J, Yamada S, Okada Y, Sato J, Ito A, Miyazaki K et al. (2000). Structural requirements of heparan sulfate for the binding to the tumor-derived adhesion factor/angiomodulin that induces cord-like structures to ECV-304 human carcinoma cells. J Biol Chem 275: 15321–15329.

    Article  CAS  PubMed  Google Scholar 

  • Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC . (1995). Histopathology, classification, and grading of gliomas. Glia 15: 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Kniesel U, Wolburg H . (2000). Tight junctions of the blood–brain barrier. Cell Mol Neurobiol 20: 57–76.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Okazaki Y, Tateno M, Kawai J, Konno H, Kusakabe M et al. (2000). Methylation and downregulated expression of mac25/insulin-like growth factor binding protein-7 is associated with liver tumorigenesis in SV40T/t antigen transgenic mice, screened by restriction landmark genomic scanning for methylation (RLGS-M). Biochem Biophys Res Commun 267: 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Kwak HJ, Park MJ, Cho H, Park CM, Moon SI, Lee HC et al. (2006). Transforming growth factor-beta1 induces tissue inhibitor of metalloproteinase-1 expression via activation of extracellular signal-regulated kinase and Sp1 in human fibrosarcoma cells. Mol Cancer Res 4: 209–220.

    Article  CAS  PubMed  Google Scholar 

  • Lebrin F, Deckers M, Bertolino P, Ten Dijke P . (2005). TGF-beta receptor function in the endothelium. Cardiovasc Res 65: 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Lai M, Huang Q, Ma Y, Cui J, Ruan W . (2007). Methylation patterns of IGFBP7 in colon cancer cell lines are associated with levels of gene expression. J Pathol 212: 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Long DM . (1970). Capillary ultrastructure and the blood–brain barrier in human malignant brain tumors. J Neurosurg 32: 127–144.

    Article  CAS  PubMed  Google Scholar 

  • Louis DN . (2006). Molecular pathology of malignant gliomas. Annu Rev Pathol 1: 97–117.

    Article  CAS  PubMed  Google Scholar 

  • Madden SL, Cook BP, Nacht M, Weber WD, Callahan MR, Jiang Y et al. (2004). Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 165: 601–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massague J . (1998). TGF-beta signal transduction. Annu Rev Biochem 67: 753–791.

    Article  CAS  PubMed  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF . (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno MJ, Ball M, Andrade MF, McDermid A, Stanimirovic DB . (2006). Insulin-like growth factor binding protein-4 (IGFBP-4) is a novel anti-angiogenic and anti-tumorigenic mediator secreted by dibutyryl cyclic AMP (dB-cAMP)-differentiated glioblastoma cells. Glia 53: 845–857.

    Article  PubMed  Google Scholar 

  • Murphy M, Pykett MJ, Harnish P, Zang KD, George DL . (1993). Identification and characterization of genes differentially expressed in meningiomas. Cell Growth Differ 4: 715–722.

    CAS  PubMed  Google Scholar 

  • Mutaguchi K, Yasumoto H, Mita K, Matsubara A, Shiina H, Igawa M et al. (2003). Restoration of insulin-like growth factor binding protein-related protein 1 has a tumor-suppressive activity through induction of apoptosis in human prostate cancer. Cancer Res 63: 7717–7723.

    CAS  PubMed  Google Scholar 

  • Nagakubo D, Murai T, Tanaka T, Usui T, Matsumoto M, Sekiguchi K et al. (2003). A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. J Immunol 171: 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Oh Y, Nagalla SR, Yamanaka Y, Kim HS, Wilson E, Rosenfeld RG . (1996). Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. J Biol Chem 271: 30322–30325.

    Article  CAS  PubMed  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ . (1977). The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH . (1992). Transforming growth factor-beta 1, -beta 2, and -beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J Biol Chem 267: 19482–19488.

    CAS  PubMed  Google Scholar 

  • Pen A, Moreno MJ, Martin J, Stanimirovic DB . (2007). Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels. Glia 55: 559–572.

    Article  PubMed  Google Scholar 

  • Pepper MS . (1997). Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8: 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Poncelet AC, Schnaper HW . (1998). Regulation of human mesangial cell collagen expression by transforming growth factor-beta1. Am J Physiol 275: F458–F466.

    CAS  PubMed  Google Scholar 

  • Ramsauer M, D'Amore PA . (2007). Contextual role for angiopoietins and TGF-beta1 in blood vessel stabilization. J Cell Sci 120: 1810–1817.

    Article  CAS  PubMed  Google Scholar 

  • Reed MJ, Vernon RB, Abrass IB, Sage EH . (1994). TGF-beta 1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158: 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Ruan W, Xu E, Xu F, Ma Y, Deng H, Huang Q et al. (2007). IGFBP7 plays a potential tumor suppressor role in colorectal carcinogenesis. Cancer Biol Ther 6: 354–359.

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Hasegawa S, Akaogi K, Yasumitsu H, Yamada S, Sugahara K et al. (1999). Identification of cell-binding site of angiomodulin (AGM/TAF/Mac25) that interacts with heparan sulfates on cell surface. J Cell Biochem 75: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Sprenger CC, Damon SE, Hwa V, Rosenfeld RG, Plymate SR . (1999). Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) is a potential tumor suppressor protein for prostate cancer. Cancer Res 59: 2370–2375.

    CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. (2000). Genes expressed in human tumor endothelium. Science 289: 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  • Stanimirovic D, Morley P, Ball R, Hamel E, Mealing G, Durkin JP . (1996). Angiotensin II-induced fluid phase endocytosis in human cerebromicrovascular endothelial cells is regulated by the inositol-phosphate signaling pathway. J Cell Physiol 169: 455–467.

    Article  CAS  PubMed  Google Scholar 

  • ten Dijke P, Hansen P, Iwata KK, Pieler C, Foulkes JG . (1988). Identification of another member of the transforming growth factor type beta gene family. Proc Natl Acad Sci USA 85: 4715–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeda F, Ono Y, Sekiguchi N, Hashimoto T, Masakado M, Nakamura K et al. (1998). Increased mRNA expression of a novel prostacyclin-stimulating factor in human colon cancer. J Gastroenterol 33: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Vajkoczy P, Goldbrunner R, Farhadi M, Vince G, Schilling L, Tonn JC et al. (1999). Glioma cell migration is associated with glioma-induced angiogenesis in vivo. Int J Dev Neurosci 17: 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Vajkoczy P, Menger MD . (2000). Vascular microenvironment in gliomas. J Neurooncol 50: 99–108.

    Article  CAS  PubMed  Google Scholar 

  • van Beijnum JR, Dings RP, van der Linden E, Zwaans BM, Ramaekers FC, Mayo KH et al. (2006). Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108: 2339–2348.

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Thews O, Kelleher DK, Hoeckel M . (1998). Oxygenation of human tumors: the Mainz experience. Strahlenther Onkol 174 (Suppl 4): 6–12.

    PubMed  Google Scholar 

  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132: 363–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watabe T, Nishihara A, Mishima K, Yamashita J, Shimizu K, Miyazawa K et al. (2003). TGF-beta receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol 163: 1303–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller M, Malipiero U, Groscurth P, Fontana A . (1995). T cell apoptosis induced by interleukin-2 deprivation or transforming growth factor-beta 2: modulation by the phosphatase inhibitors okadaic acid and calyculin A. Exp Cell Res 221: 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Wick W, Platten M, Weller M . (2001). Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53: 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Wilson HM, Birnbaum RS, Poot M, Quinn LS, Swisshelm K . (2002). Insulin-like growth factor binding protein-related protein 1 inhibits proliferation of MCF-7 breast cancer cells via a senescence-like mechanism. Cell Growth Differ 13: 205–213.

    CAS  PubMed  Google Scholar 

  • Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S . (2001). Regulation of Smad signaling by protein kinase C. FASEB J 15: 553–555.

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH et al. (1995). Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62: 386–392.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Umeda F, Masakado M, Isaji M, Mizushima S, Nawata H . (1994). Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells. Biochem J 303 (Part 2): 591–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Gilles St-Laurent for technical assistance for the production of IGFBP7, Mrs Debbie Callaghan for technical assistance in nuclear protein extraction, Dr Anne Lenferink for valuable discussions and Mr Tom Devecseri for image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D B Stanimirovic.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pen, A., Moreno, M., Durocher, Y. et al. Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-β signaling. Oncogene 27, 6834–6844 (2008). https://doi.org/10.1038/onc.2008.287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.287

Keywords

This article is cited by

Search

Quick links