Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV

Abstract

Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPXnL late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPXnL late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPXnL late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPXnL sequences with both n = 1 and n = 3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of ALIXBro1-V–YPXnL complexes.
Figure 2: ALIX-YPXnL binding affinities.
Figure 3: The HIV-1 p6Gag YPXnL tyrosine is essential for late-domain function.
Figure 4: ALIX incorporation into HIV-1 virus-like particles.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Demirov, D.G. & Freed, E.O. Retrovirus budding. Virus Res. 106, 87–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Bieniasz, P.D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Morita, E. & Sundquist, W.I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Gottlinger, H.G., Dorfman, T., Sodroski, J.G. & Haseltine, W.A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 88, 3195–3199 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, M., Orenstein, J.M., Martin, M.A. & Freed, E.O. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69, 6810–6818 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Demirov, D.G., Ono, A., Orenstein, J.M. & Freed, E.O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin-Serrano, J., Zang, T. & Bieniasz, P.D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H.G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. von Schwedler, U.K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Vincent, O., Rainbow, L., Tilburn, J., Arst, H.N., Jr. & Penalva, M.A. YPXL/I is a protein interaction motif recognized by Aspergillus PalA and its human homologue, AIP1/Alix. Mol. Cell. Biol. 23, 1647–1655 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puffer, B.A., Parent, L.J., Wills, J.W. & Montelaro, R.C. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 71, 6541–6546 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, C., Vincent, O., Jin, J., Weisz, O.A. & Montelaro, R.C. Functions of early (AP-2) and late (AIP1/ALIX) endocytic proteins in equine infectious anemia virus budding. J. Biol. Chem. 280, 40474–40480 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P.D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl. Acad. Sci. USA 100, 12414–12419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurley, J.H. & Emr, S.D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Odorizzi, G. The multiple personalities of Alix. J. Cell Sci. 119, 3025–3032 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Williams, R.L. & Urbe, S. The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol. 8, 355–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Carlton, J.G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding- a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, J. et al. Structural basis for endosomal targeting by the Bro1 domain. Dev. Cell 8, 937–947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bowers, K. et al. Protein-protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae. Traffic 5, 194–210 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pornillos, O., Alam, S.L., Davis, D.R. & Sundquist, W.I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat. Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  25. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fisher, R.D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Usami, Y., Popov, S. & Gottlinger, H.G. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 that depends on its CHMP4 binding site. J. Virol. 81, 6614–6622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bibollet-Ruche, F. et al. New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J. Virol. 78, 7748–7762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, S., Joshi, A., Nagashima, K., Freed, E.O. & Hurley, J.H. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 14, 194–199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Odorizzi, G., Katzmann, D.J., Babst, M., Audhya, A. & Emr, S.D. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci. 116, 1893–1903 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Vito, P., Pellegrini, L., Guiet, C. & D'Adamio, L. Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J. Biol. Chem. 274, 1533–1540 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Missotten, M., Nichols, A., Rieger, K. & Sadoul, R. Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein. Cell Death Differ. 6, 124–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, B., Borinstein, S.C., Gillis, J., Sykes, V.W. & Bogler, O. The glioma-associated protein SETA interacts with AIP1/Alix and ALG-2 and modulates apoptosis in astrocytes. J. Biol. Chem. 275, 19275–19281 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Chatellard-Causse, C. et al. Alix (ALG-2-interacting protein X), a protein involved in apoptosis, binds to endophilins and induces cytoplasmic vacuolization. J. Biol. Chem. 277, 29108–29115 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Tsuda, M., Seong, K.H. & Aigaki, T. POSH, a scaffold protein for JNK signaling, binds to ALG-2 and ALIX in Drosophila. FEBS Lett. 580, 3296–3300 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Munshi, U.M., Kim, J., Nagashima, K., Hurley, J.H. & Freed, E.O. An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J. Biol. Chem. 282, 3847–3855 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Martin-Serrano, J., Perez-Caballero, D. & Bieniasz, P.D. Context-dependent effects of L domains and ubiquitination on viral budding. J. Virol. 78, 5554–5563 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geminard, C., De Gassart, A., Blanc, L. & Vidal, M. Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TFR for sorting into exosomes. Traffic 5, 181–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Costa, L.J. et al. Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 3, 33 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology Vol. 276 (eds. Carter, C.W., Jr. & Sweet, R.M.) 307–326 (Academic Press, New York, 1997).

    Google Scholar 

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Merritt, E.A. & Painter, J. TLSMD web server for the generation of multi-group TLS models. J. Appl. Cryst. 39, 109–111 (2006).

    Article  Google Scholar 

  43. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  PubMed  Google Scholar 

  44. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Howlin, B., Butler, S.A., Moss, D.S., Harris, G.W. & Driessen, H.P.C. TLSANL: TLS parameter analysis program for segmented anisotropic refinement of macromolecular structures. J. Appl. Cryst. 26, 622–624 (1993).

    Article  Google Scholar 

  46. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  49. Laskowski, R.A., Moss, D.S. & Thornton, J.M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Johnsson, B., Lofas, S. & Lindquist, G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198, 268–277 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Myszka, D.G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank P. Bieniasz (Aaron Diamond AIDS Research Center) for kindly providing various HIV-1 proviral plasmids and H. Göttlinger (University of Massachusettes) for helpful discussions. This work was funded by US National Institutes of Health (NIH) grants GM082534 (C.P.H., W.I.S.) and AI051174 (W.I.S.). Portions of this research were performed at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources, Biomedical Technology Program and National Institute of General Medical Sciences. The Center for Biomolecular Interactions Analysis at the University of Utah is funded in part by NIH grant 1S10RR016787-01 (D.G.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wesley I Sundquist or Christopher P Hill.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Q., Fisher, R., Chung, HY. et al. Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV. Nat Struct Mol Biol 15, 43–49 (2008). https://doi.org/10.1038/nsmb1319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing