Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery

Abstract

The histone chaperone SET is required for transcription of chromatin templates by RNA polymerase Pol II (Pol II) in vitro. Here we uncover a positive role for SET in dislodging DEK and PARP1, which restrict access to chromatin in the absence of SET and the PARP1 substrate NAD+. SET binds chromatin, dissociating DEK and PARP1 to allow transcription in the absence of NAD+. In the absence of SET, depletion of DEK restores chromatin accessibility to endonuclease but does not permit Mediator recruitment or transcription. In the presence of NAD+, PARP1 poly(ADP-ribosyl)ates and evicts DEK (and itself) from chromatin to permit Mediator loading and transcription independent of SET. An artificial DEK variant resistant to SET and PARP1 represses transcription, indicating a requirement for DEK removal. Therefore, SET, DEK and PARP1 constitute a network governing access to chromatin by the transcription machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SET and NAD+ have similar effects on chromatin structure and function.
Figure 2: Purification of DEK as a repressor of nuclease accessibility.
Figure 3: DEK mediates SET-sensitive repression of chromatin accessibility and transcription.
Figure 4: DEK is a target for poly(ADP-ribosyl)ation by PARP1.
Figure 5: SET and poly(ADP-ribosyl)ation promote dissociation of DEK and PARP1 from chromatin.
Figure 6: SET or NAD+ is required for loading Mediator.

Similar content being viewed by others

References

  1. Kadonaga, J.T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004).

    Article  CAS  Google Scholar 

  2. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).

    Article  CAS  Google Scholar 

  3. Gamble, M.J., Erdjument-Bromage, H., Tempst, P., Freedman, L.P. & Fisher, R.P. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates. Mol. Cell. Biol. 25, 797–807 (2005).

    Article  CAS  Google Scholar 

  4. Guermah, M., Palhan, V.B., Tackett, A.J., Chait, B.T. & Roeder, R.G. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell 125, 275–286 (2006).

    Article  CAS  Google Scholar 

  5. Santoso, B. & Kadonaga, J.T. Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nat. Struct. Mol. Biol. 13, 131–139 (2006).

    Article  CAS  Google Scholar 

  6. Kornberg, R.D. & Lorch, Y. Chromatin and transcription: where do we go from here. Curr. Opin. Genet. Dev. 12, 249–251 (2002).

    Article  CAS  Google Scholar 

  7. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  Google Scholar 

  8. Kireeva, M.L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  Google Scholar 

  9. Orphanides, G., Wu, W.H., Lane, W.S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).

    Article  CAS  Google Scholar 

  10. Studitsky, V.M., Walter, W., Kireeva, M., Kashlev, M. & Felsenfeld, G. Chromatin remodeling by RNA polymerases. Trends Biochem. Sci. 29, 127–135 (2004).

    Article  CAS  Google Scholar 

  11. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  12. Bustin, M., Catez, F. & Lim, J.H. The dynamics of histone H1 function in chromatin. Mol. Cell 17, 617–620 (2005).

    Article  CAS  Google Scholar 

  13. Kraus, W.L. & Lis, J.T. PARP goes transcription. Cell 113, 677–683 (2003).

    Article  CAS  Google Scholar 

  14. Rouleau, M., Aubin, R.A. & Poirier, G.G. Poly(ADP-ribosyl)ated chromatin domains: access granted. J. Cell Sci. 117, 815–825 (2004).

    Article  CAS  Google Scholar 

  15. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T. & Kraus, W.L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803–814 (2004).

    Article  CAS  Google Scholar 

  16. Muto, S. et al. Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc. Natl. Acad. Sci. USA 104, 4285–4290 (2007).

    Article  CAS  Google Scholar 

  17. Park, Y.J. & Luger, K. The structure of nucleosome assembly protein 1. Proc. Natl. Acad. Sci. USA 103, 1248–1253 (2006).

    Article  CAS  Google Scholar 

  18. von Lindern, M. et al. Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol. Cell. Biol. 12, 3346–3355 (1992).

    Article  CAS  Google Scholar 

  19. Matsumoto, K., Nagata, K., Ui, M. & Hanaoka, F. Template activating factor I, a novel host factor required to stimulate the adenovirus core DNA replication. J. Biol. Chem. 268, 10582–10587 (1993).

    CAS  PubMed  Google Scholar 

  20. Loven, M.A., Muster, N., Yates, J.R. & Nardulli, A.M. A novel estrogen receptor α-associated protein, template-activating factor Iβ, inhibits acetylation and transactivation. Mol. Endocrinol. 17, 67–78 (2003).

    Article  CAS  Google Scholar 

  21. Miyamoto, S. et al. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol. Cell. Biol. 23, 8528–8541 (2003).

    Article  CAS  Google Scholar 

  22. Seo, S.B. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119–130 (2001).

    Article  CAS  Google Scholar 

  23. Suzuki, T. et al. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I. J. Biol. Chem. 278, 28758–28764 (2003).

    Article  CAS  Google Scholar 

  24. Nowak, S.J., Pai, C.Y. & Corces, V.G. Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol. Cell. Biol. 23, 6129–6138 (2003).

    Article  CAS  Google Scholar 

  25. Haruki, H., Okuwaki, M., Miyagishi, M., Taira, K. & Nagata, K. Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. J. Virol. 80, 794–801 (2006).

    Article  CAS  Google Scholar 

  26. Waldmann, T., Scholten, I., Kappes, F., Hu, H.G. & Knippers, R. The DEK protein–an abundant and ubiquitous constituent of mammalian chromatin. Gene 343, 1–9 (2004).

    Article  CAS  Google Scholar 

  27. Kraemer, D., Wozniak, R.W., Blobel, G. & Radu, A. The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc. Natl. Acad. Sci. USA 91, 1519–1523 (1994).

    Article  CAS  Google Scholar 

  28. von Lindern, M. et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol. Cell. Biol. 12, 1687–1697 (1992).

    Article  CAS  Google Scholar 

  29. Adkins, M.W., Howar, S.R. & Tyler, J.K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657–666 (2004).

    Article  CAS  Google Scholar 

  30. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004).

    Article  CAS  Google Scholar 

  31. Tulin, A. & Spradling, A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299, 560–562 (2003).

    Article  CAS  Google Scholar 

  32. Nagata, K. et al. Replication factor encoded by a putative oncogene, set, associated with myeloid leukemogenesis. Proc. Natl. Acad. Sci. USA 92, 4279–4283 (1995).

    Article  CAS  Google Scholar 

  33. Waters, R., Ramsay, F. & Barrett, I. 3-Aminobenzamide, an inhibitor of poly ADP-ribose polymerase, decreases the frequency of alkaline labile lesions and increases growth in human fibroblasts exposed to 3-methyl 4-nitroquinoline 1-oxide. Carcinogenesis 3, 1463–1467 (1982).

    Article  CAS  Google Scholar 

  34. Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D. & Schreiber, S.L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843 (2001).

    Article  CAS  Google Scholar 

  35. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  Google Scholar 

  36. Bourbon, H.M. et al. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 14, 553–557 (2004).

    Article  CAS  Google Scholar 

  37. Kim, M.Y., Zhang, T. & Kraus, W.L. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 19, 1951–1967 (2005).

    Article  CAS  Google Scholar 

  38. Ju, B.G. et al. Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119, 815–829 (2004).

    Article  CAS  Google Scholar 

  39. Pavri, R. et al. PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol. Cell 18, 83–96 (2005).

    Article  CAS  Google Scholar 

  40. Tulin, A., Stewart, D. & Spradling, A.C. The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev. 16, 2108–2119 (2002).

    Article  CAS  Google Scholar 

  41. von Lindern, M., Poustka, A., Lerach, H. & Grosveld, G. The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34. Mol. Cell. Biol. 10, 4016–4026 (1990).

    Article  CAS  Google Scholar 

  42. Waldmann, T., Baack, M., Richter, N. & Gruss, C. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res. 31, 7003–7010 (2003).

    Article  CAS  Google Scholar 

  43. Kappes, F., Burger, K., Baack, M., Fackelmayer, F.O. & Gruss, C. Subcellular localization of the human proto-oncogene protein DEK. J. Biol. Chem. 276, 26317–26323 (2001).

    Article  CAS  Google Scholar 

  44. Campillos, M., Garcia, M.A., Valdivieso, F. & Vazquez, J. Transcriptional activation by AP-2α is modulated by the oncogene DEK. Nucleic Acids Res. 31, 1571–1575 (2003).

    Article  CAS  Google Scholar 

  45. Cleary, J. et al. p300/CBP-associated factor drives DEK into interchromatin granule clusters. J. Biol. Chem. 280, 31760–31767 (2005).

    Article  CAS  Google Scholar 

  46. Hu, H.G., Illges, H., Gruss, C. & Knippers, R. Distribution of the chromatin protein DEK distinguishes active and inactive CD21/CR2 gene in pre- and mature B lymphocytes. Int. Immunol. 17, 789–796 (2005).

    Article  CAS  Google Scholar 

  47. Soares, L.M., Zanier, K., Mackereth, C., Sattler, M. & Valcarcel, J. Intron removal requires proofreading of U2AF/3' splice site recognition by DEK. Science 312, 1961–1965 (2006).

    Article  Google Scholar 

  48. Okuwaki, M. & Nagata, K. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template. J. Biol. Chem. 273, 34511–34518 (1998).

    Article  CAS  Google Scholar 

  49. Simbulan-Rosenthal, C.M. et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 97, 11274–11279 (2000).

    Article  CAS  Google Scholar 

  50. Ouararhni, K. et al. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev. 20, 3324–3336 (2006).

    Article  CAS  Google Scholar 

  51. Wilker, E.W. et al. 14–3-3sigma controls mitotic translation to facilitate cytokinesis. Nature 446, 329–332 (2007).

    Article  CAS  Google Scholar 

  52. Carro, M.S. et al. DEK expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle 5, 1202–1207 (2006).

    Article  CAS  Google Scholar 

  53. Boer, J., Bonten-Surtel, J. & Grosveld, G. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol. Cell. Biol. 18, 1236–1247 (1998).

    Article  CAS  Google Scholar 

  54. Kandilci, A., Mientjes, E. & Grosveld, G. Effects of SET and SET-CAN on the differentiation of the human promonocytic cell line U937. Leukemia 18, 337–340 (2004).

    Article  CAS  Google Scholar 

  55. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Larochelle and J. Lis (Cornell University) for critical review of the manuscript and for many helpful discussions; W. Lee Kraus (Cornell University) for helpful comments and suggestions, for PARP1 and Gal4-VP16 expression vectors and pGEIO plasmid, and for material support during the revision process; H. Erdjument-Bromage and P. Tempst for mass spectrometric identification of DEK, SET and PARP1; T. Ito (Nagasaki University) for core histone–specific antibodies; J. Kadonaga (University of California, San Diego) for NAP1, ISWI and Acf1 baculoviruses; M. Ptashne for Gal4 DNA-binding domain–specific antibodies; and R. Roeder (Rockefeller University) for MED30-specific antibodies. HeLa cells were provided by the National Cell Culture Center (US). This work was supported in part by US National Institutes of Health grant DK45460 to R.P.F.

Author information

Authors and Affiliations

Authors

Contributions

M.J.G. designed and executed experiments and prepared the manuscript; R.P.F. prepared the manuscript.

Corresponding author

Correspondence to Robert P Fisher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Time course of restriction endonuclease accessibility of chromatin in the presence of SET and/or the PC1 fraction. (PDF 78 kb)

Supplementary Fig. 2

Removal of DEK is not sufficient to restore chromatin transcription of PIC assembly in the absence of SET. (PDF 557 kb)

Supplementary Fig. 3

GST or thrombin does not affect chromatin transcription. (PDF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamble, M., Fisher, R. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 14, 548–555 (2007). https://doi.org/10.1038/nsmb1248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing