Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for Rab GTPase activation by VPS9 domain exchange factors

Abstract

RABEX-5 and other exchange factors with VPS9 domains regulate endocytic trafficking through activation of the Rab family GTPases RAB5, RAB21 and RAB22. Here we report the crystal structure of the RABEX-5 catalytic core in complex with nucleotide-free RAB21, a key intermediate in the exchange reaction pathway. The structure reveals how VPS9 domain exchange factors recognize Rab GTPase substrates, accelerate GDP release and stabilize the nucleotide-free conformation. We further identify an autoinhibitory element in a predicted amphipathic helix located near the C terminus of the VPS9 domain. The autoinhibitory element overlaps with the binding site for the multivalent effector RABAPTIN-5 and potently suppresses the exchange activity of RABEX-5. Autoinhibition can be partially reversed by mutation of conserved residues on the nonpolar face of the predicted amphipathic helix or by assembly of the complex with RABAPTIN-5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the RABEX-5 HB-VPS9 tandem in complex with nucleotide-free RAB21.
Figure 2: Conformational changes accompanying formation of the nucleotide-free complex.
Figure 3: Comparison with the nucleotide-free Sec7–Arf GTPase complex.
Figure 4: Identification of an autoinhibitory element in RABEX-5.
Figure 5: Partial reversal of autoinhibition by formation of the complex with RABAPTIN-5.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Pfeffer, S.R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).

    Article  CAS  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  3. Burd, C.G., Mustol, P.A., Schu, P.V. & Emr, S.D. A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol. Cell. Biol. 16, 2369–2377 (1996).

    Article  CAS  Google Scholar 

  4. Hama, H., Tall, G.G. & Horazdovsky, B.F. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J. Biol. Chem. 274, 15284–15291 (1999).

    Article  CAS  Google Scholar 

  5. Davies, B.A. et al. Vps9p CUE domain ubiquitin binding is required for efficient endocytic protein traffic. J. Biol. Chem. 278, 19826–19833 (2003).

    Article  CAS  Google Scholar 

  6. Shih, S.C. et al. A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J. 22, 1273–1281 (2003).

    Article  CAS  Google Scholar 

  7. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  Google Scholar 

  8. Tall, G.G., Barbieri, M.A., Stahl, P.D. & Horazdovsky, B.F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1, 73–82 (2001).

    Article  CAS  Google Scholar 

  9. Saito, K. et al. A novel binding protein composed of homophilic tetramer exhibits unique properties for the small GTPase Rab5. J. Biol. Chem. 277, 3412–3418 (2002).

    Article  CAS  Google Scholar 

  10. Kajiho, H. et al. RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J. Cell Sci. 116, 4159–4168 (2003).

    Article  CAS  Google Scholar 

  11. Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet. 12, 1671–1687 (2003).

    Article  CAS  Google Scholar 

  12. Sato, M. et al. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat. Cell Biol. 7, 559–569 (2005).

    Article  CAS  Google Scholar 

  13. Zhang, X., He, X., Fu, X.Y. & Chang, Z. Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J. Cell Sci. 119, 1053–1062 (2006).

    Article  CAS  Google Scholar 

  14. Gournier, H., Stenmark, H., Rybin, V., Lippe, R. & Zerial, M. Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. EMBO J. 17, 1930–1940 (1998).

    Article  CAS  Google Scholar 

  15. Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol. Biol. Cell 12, 2219–2228 (2001).

    Article  CAS  Google Scholar 

  16. McBride, H.M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  Google Scholar 

  17. Tam, S.Y. et al. RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nat. Immunol. 5, 844–852 (2004).

    Article  CAS  Google Scholar 

  18. Kalesnikoff, J. et al. RabGEF1 regulates stem cell factor/c-Kit-mediated signaling events and biological responses in mast cells. Proc. Natl. Acad. Sci. USA 103, 2659–2664 (2006).

    Article  CAS  Google Scholar 

  19. Lee, S. et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat. Struct. Mol. Biol. 13, 264–271 (2006).

    Article  CAS  Google Scholar 

  20. Mattera, R., Tsai, Y.C., Weissman, A.M. & Bonifacino, J.S. The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J. Biol. Chem. 281, 6874–6883 (2006).

    Article  CAS  Google Scholar 

  21. Penengo, L. et al. Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin. Cell 124, 1183–1195 (2006).

    Article  CAS  Google Scholar 

  22. Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 17, 1941–1951 (1998).

    Article  CAS  Google Scholar 

  23. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex. EMBO J. 22, 78–88 (2003).

    Article  CAS  Google Scholar 

  24. Zhu, G. et al. Crystal structure of human GGA1 GAT domain complexed with the GAT-binding domain of Rabaptin5. EMBO J. 23, 3909–3917 (2004).

    Article  CAS  Google Scholar 

  25. Delprato, A., Merithew, E. & Lambright, D.G. Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 118, 607–617 (2004).

    Article  CAS  Google Scholar 

  26. Bock, J.B., Matern, H.T., Peden, A.A. & Scheller, R.H. A genomic perspective on membrane compartment organization. Nature 409, 839–841 (2001).

    Article  CAS  Google Scholar 

  27. Pereira-Leal, J.B. & Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889–901 (2001).

    Article  CAS  Google Scholar 

  28. Kauppi, M. et al. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J. Cell Sci. 115, 899–911 (2002).

    CAS  PubMed  Google Scholar 

  29. Simpson, J.C. et al. A role for the small GTPase Rab21 in the early endocytic pathway. J. Cell Sci. 117, 6297–6311 (2004).

    Article  CAS  Google Scholar 

  30. Magadan, J.G., Barbieri, M.A., Mesa, R., Stahl, P.D. & Mayorga, L.S. Rab22a regulates the sorting of transferrin to recycling endosomes. Mol. Cell. Biol. 26, 2595–2614 (2006).

    Article  CAS  Google Scholar 

  31. Khurana, T., Brzostowski, J.A. & Kimmel, A.R.A. Rab21/LIM-only/CH-LIM complex regulates phagocytosis via both activating and inhibitory mechanisms. EMBO J. 24, 2254–2264 (2005).

    Article  CAS  Google Scholar 

  32. Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 173, 767–780 (2006).

    Article  CAS  Google Scholar 

  33. al-Karadaghi, S., Aevarsson, A., Garber, M., Zheltonosova, J. & Liljas, A. The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555–565 (1996).

    Article  CAS  Google Scholar 

  34. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).

    Article  CAS  Google Scholar 

  35. Eathiraj, S., Pan, X., Ritacco, C. & Lambright, D.G. Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436, 415–419 (2005).

    Article  CAS  Google Scholar 

  36. Klebe, C., Prinz, H., Wittinghofer, A. & Goody, R.S. The kinetic mechanism of Ran–nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552 (1995).

    Article  CAS  Google Scholar 

  37. Esters, H. et al. Vps9, Rabex-5 and DSS4: proteins with weak but distinct nucleotide-exchange activities for Rab proteins. J. Mol. Biol. 310, 141–156 (2001).

    Article  CAS  Google Scholar 

  38. Guo, Z., Ahmadian, M.R. & Goody, R.S. Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism. Biochemistry 44, 15423–15429 (2005).

    Article  CAS  Google Scholar 

  39. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  40. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003).

    Article  CAS  Google Scholar 

  41. Itzen, A., Pylypenko, O., Goody, R.S., Alexandrov, K. & Rak, A. Nucleotide exchange via local protein unfolding–structure of Rab8 in complex with MSS4. EMBO J. 25, 1445–1455 (2006).

    Article  CAS  Google Scholar 

  42. Burton, J., Roberts, D., Montaldi, M., Novick, P. & De Camilli, P. A mammalian guanine-nucleotide-releasing protein enhances function of yeast secretory protein Sec4. Nature 361, 464–467 (1993).

    Article  CAS  Google Scholar 

  43. Burton, J.L., Burns, M.E., Gatti, E., Augustine, G.J. & De Camilli, P. Specific interactions of Mss4 with members of the Rab GTPase subfamily. EMBO J. 13, 5547–5558 (1994).

    Article  CAS  Google Scholar 

  44. Nuoffer, C., Wu, S.K., Dascher, C. & Balch, W.E. Mss4 does not function as an exchange factor for Rab in endoplasmic reticulum to Golgi transport. Mol. Biol. Cell 8, 1305–1316 (1997).

    Article  CAS  Google Scholar 

  45. Mossessova, E., Corpina, R.A. & Goldberg, J. Crystal structure of ARF1*Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism. Mol. Cell 12, 1403–1411 (2003).

    Article  CAS  Google Scholar 

  46. Weigert, R., Yeung, A.C., Li, J. & Donaldson, J.G. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol. Biol. Cell 15, 3758–3770 (2004).

    Article  CAS  Google Scholar 

  47. Aghazadeh, B., Lowry, W.E., Huang, X.Y. & Rosen, M.K. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 102, 625–633 (2000).

    Article  CAS  Google Scholar 

  48. Margarit, S.M. et al. Structural evidence for feedback activation by Ras-GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  Google Scholar 

  49. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  Google Scholar 

  50. Cerione, R.A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  51. Chardin, P. et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338–1343 (1993).

    Article  CAS  Google Scholar 

  52. Zhu, Z., Dumas, J.J., Lietzke, S.E. & Lambright, D.G. A helical turn motif in Mss4 is a critical determinant of Rab binding and nucleotide release. Biochemistry 40, 3027–3036 (2001).

    Article  CAS  Google Scholar 

  53. Collaborative Compuational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  54. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  55. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Synchrotron Light Source X25 beamline staff for assistance with X-ray data collection and J. Goldberg (Memorial Sloan-Kettering Cancer Center) for the coordinates of the nucleotide-free ARF1–Gea2 complex. This work was supported by US National Institutes of Health grants GM56324 and DK60564 (to D.G.L.) and by a Charles A. King Postdoctoral Fellowship (to A.D.).

Author information

Authors and Affiliations

Authors

Contributions

A.D. was responsible for biochemical and crystallographic experiments, structure determination and refinement of the structural model. D.G.L. assisted with experimental design, synchrotron data collection and structure determination. A.D. and D.G.L. wrote the manuscript.

Corresponding author

Correspondence to David G Lambright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Representative electron density for the RABEX-5-RAB21 complex from a simulated annealing omit map. (PDF 260 kb)

Supplementary Fig. 2

Comparison of RABEX-5 alone and in complex with RAB21. (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delprato, A., Lambright, D. Structural basis for Rab GTPase activation by VPS9 domain exchange factors. Nat Struct Mol Biol 14, 406–412 (2007). https://doi.org/10.1038/nsmb1232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing