Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Involvement of AGO1 and AGO2 in mammalian transcriptional silencing

Abstract

Duplex RNAs complementary to messenger RNA inhibit translation in mammalian cells by RNA interference (RNAi). Studies have reported that RNAs complementary to promoter DNA also inhibit gene expression. Here we show that the human homologs of Argonaute-1 (AGO1) and Argonaute-2 (AGO2) link the silencing pathways that target mRNA with pathways mediating recognition of DNA. We find that synthetic antigene RNAs (agRNAs) complementary to transcription start sites or more upstream regions of gene promoters inhibit gene transcription. This silencing occurs in the nucleus, requires high promoter activity and does not necessarily require histone modification. AGO1 and AGO2 associate with promoter DNA in cells treated with agRNAs, and inhibiting expression of AGO1 or AGO2 reverses transcriptional and post-transcriptional silencing. Our data indicate key linkages and important mechanistic distinctions between transcriptional and post-transcriptional silencing pathways in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition by agRNAs complementary to sequences upstream from the transcription start sites (+1) of genes encoding HTT, AR and PR.
Figure 2: Effects of high or low levels of basal gene expression on silencing by agRNAs and siRNAs.
Figure 3: Histone modification and activity of agRNAs.
Figure 4: Involvement of AGO1 and AGO2 in transcriptional silencing.

Similar content being viewed by others

References

  1. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  2. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  Google Scholar 

  3. Castanotto, D. et al. Short hairpin RNA-directed cytosine (CpG) methylation of the RASSF1 promoter in HeLa cells. Mol. Ther. 12, 179–183 (2005).

    Article  CAS  Google Scholar 

  4. Ting, A.H., Schuebel, K.E., Herman, J.G. & Baylin, S.B. Short double-stranded RNA induces transcriptional gene silencing in human cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    Article  CAS  Google Scholar 

  5. Janowski, B.A. et al. Inhibition of gene expression at transcription start sites using antigene RNAs (agRNAs). Nat. Chem. Biol. 1, 216–222 (2005).

    Article  CAS  Google Scholar 

  6. Suzuki, K. et al. Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. J. RNAi Gene Silencing 1, 66–78 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, M-X. et al. Regulation of endothelial nitric oxide synthase by small RNA. Proc. Natl. Acad. Sci. USA 102, 16967–16972 (2005).

    Article  CAS  Google Scholar 

  8. Weinberg, M.S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  Google Scholar 

  9. Corey, D.R. Regulating mammalian transcription with RNA. Trends Biochem. Sci. 30, 655–658 (2005).

    Article  CAS  Google Scholar 

  10. Meister, G. et al. Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  11. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  12. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  Google Scholar 

  13. Hall, T.M. Structure and function of Argonaute proteins. Structure 13, 1403–1408 (2005).

    Article  CAS  Google Scholar 

  14. Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the argonaute family in the human genome. Genomics 82, 323–330 (2003).

    Article  CAS  Google Scholar 

  15. Robb, G.B., Brown, K.M., Khurana, J. & Rana, T.M. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12, 133–137 (2005).

    Article  CAS  Google Scholar 

  16. Sigova, A., Rhind, N. & Zamore, P.D. A single argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev. 18, 2359–2367 (2004).

    Article  CAS  Google Scholar 

  17. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  Google Scholar 

  18. Zilberman, D., Cao, X. & Jacobsen, S.E. Argonaute4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    Article  CAS  Google Scholar 

  19. Zilberman, D. et al. Role of Arabidopsis argonaute4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol. 14, 1214–1220 (2004).

    Article  CAS  Google Scholar 

  20. Matzke, M. et al. Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim. Biophys. Acta 1677, 129–141 (2004).

    Article  CAS  Google Scholar 

  21. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  Google Scholar 

  22. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    Article  CAS  Google Scholar 

  23. Holzmann, C., Schmidt, T., Thiel, G., Epplen, J.T. & Riess, O. Functional characterization of the human Huntington's disease gene promoter. Brain Res. Mol. Brain Res. 92, 85–97 (2001).

    Article  CAS  Google Scholar 

  24. Tilley, W.D., Marcelli, M. & McPhaul, M.J. Expression of the human androgen receptor gene utilizes a common promoter in diverse human tissues and cell lines. J. Biol. Chem. 265, 13776–13781 (1990).

    CAS  PubMed  Google Scholar 

  25. Kastner, P. et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor isoforms A and B. EMBO J. 9, 1603–1614 (1990).

    Article  CAS  Google Scholar 

  26. Misrahi, M. et al. Structure of the human progesterone receptor gene. Biochim. Biophys. Acta 1216, 289–292 (1993).

    Article  CAS  Google Scholar 

  27. Takane, K.K. & McPhaul, M.J. Functional analysis of the human androgen receptor gene promoter. Mol. Cell. Endocrinol. 119, 83–93 (1996).

    Article  CAS  Google Scholar 

  28. Chen, S. et al. Functional role of a conformationally flexible homopurine/homopyrimdine domain of the androgen receptor gene promoter interacting with SP1 a pyrimidine single strand DNA binding protein. Mol. Endocrinol. 11, 3–15 (1997).

    Article  CAS  Google Scholar 

  29. Greenberg, M. Identification of newly transcribed RNA. in Current Protocols in Molecular Biology Vol. 4 (eds. Ausubel, F.M. et al.), 4.10.1–4.10.9 (1987).

    Google Scholar 

  30. Jenster, G. et al. Steroid receptor induction of gene transcription: a two-step model. Proc. Natl. Acad. Sci. USA 94, 7879–7884 (1997).

    Article  CAS  Google Scholar 

  31. Xiong, Y. et al. Epigenetic-mediated upregulation of progesterone receptor B gene in endometrial cancer cell lines. Gynecol. Oncol. 99, 135–141 (2005).

    Article  CAS  Google Scholar 

  32. Read, L.D., Snider, C.E., Miller, J.S., Greene, G.L. & Katzenellenbogen, B.S. Ligand-modulated regulation of progesterone receptor messenger ribonucleic acid and protein in human breast cancer cell lines. Mol. Endocrinol. 2, 263–271 (1988).

    Article  CAS  Google Scholar 

  33. Doi, N. et al. Short interfering RNA mediated gene silencing in mammalian cells requires dicer and eIF2C translation initiation factors. Curr. Biol. 13, 41–46 (2003).

    Article  CAS  Google Scholar 

  34. Ma, J-B., Ye, K. & Patel, D.J. Structural Basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  Google Scholar 

  35. Janowski, B.A., Hu, J. & Corey, D.R. Antigene inhibition by peptide nucleic acids and duplex RNAs. Nat. Protocols 1, 436–443 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIGMS 60642 and 73042 to D.R.C., CA 10151 to K.E.H. and SPORE CA70907 to J.D.M.), the High-Q Foundation, the Robert A. Welch Foundation (I-1244 to D.R.C.) and the Gillson Longenbough Foundation (to J.D.M.). We thank A. Khvorova and Y. Fedorov (Dharmacon) for providing the pooled RNAs needed to silence AGO2, V. Pashkov for help with the nuclear run-on assay and K. Morris for advice and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

B.A.J., K.E.H, J.C.S and D.S.S. designed and performed experiments. R.R. and R.N. performed experiments. B.A.J., J.D.M. and D.R.C. supervised the experiments.

Corresponding authors

Correspondence to Bethany A Janowski or David R Corey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Western analysis showing inhibition of PR in MCF-7 cells by mismatch-containing RNA duplex MM1, agRNAs PR26 and PR24, and siRNAs PRrna1 and PRrna2. (PDF 71 kb)

Supplementary Fig. 2

Inhibition of AGO1 expression measured after a second transfection with an anti-Ago1 siRNA or a noncomplementary oligomer. (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janowski, B., Huffman, K., Schwartz, J. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol 13, 787–792 (2006). https://doi.org/10.1038/nsmb1140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing