Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase

An Addendum to this article was published on 01 October 2007

This article has been updated

Abstract

Telomerase, a ribonucleoprotein enzyme, adds telomeric DNA repeats to the ends of linear chromosomes. Here we report the first high-resolution structure of any portion of the telomerase reverse transcriptase, the telomerase essential N-terminal (TEN) domain from Tetrahymena thermophila. The structure, which seems to represent a novel protein fold, shows phylogenetically conserved amino acid residues in a groove on its surface. These residues are crucial for telomerase catalytic activity, and several of them are required for sequence-specific binding of a single-stranded telomeric DNA primer. The positively charged C terminus, which becomes ordered upon interaction with other macromolecules, is involved in binding RNA in a non–sequence-specific manner. The TEN domain's ability to bind both RNA and telomeric DNA, coupled with the notably strong effects on activity upon mutagenesis of single surface residues, suggest how this domain contributes to telomerase catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the TEN domain.
Figure 2: Conservation of TEN domain structure.
Figure 3: In vitro telomerase activity of TERT mutants.
Figure 4: Interactions of TEN domain with telomeric DNA primers, as assessed by photo–cross-linking.
Figure 5: RNA-binding activity of the TEN domain.
Figure 6: Conceptual model of contributions of the TEN domain to the telomerase mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Change history

  • 24 September 2007

    The recent paper by Romi et al. (Proc. Natl. Acad. Sci. USA 104, 8791–8796, 2007) was in general agreement with our study of the structure and function of the N-terminal domain of Tetrahymena telomerase reverse transcriptase. However, the two studies disagreed on the effect of a mutation of Trp187 on catalysis, with our study reporting a severe reduction in activity. Upon sequencing the entire gene encoding our W187A mutant, we found that it had a second distant mutation (R812W) in motif C of the reverse transcriptase domain, and we demonstrated that it was the mutation at position 812 that abolished catalytic activity. In addition, we confirmed that authentic W187A telomerase has catalytic activity similar to that of wild-type telomerase. Both studies concur that Trp187 is physically close to the primer-binding site, and in fact Romi et al. have mapped Trp187 as a site of photo-cross-linking to a telomeric DNA primer.

Notes

  1. *NOTE: The recent paper by Romi et al. (Proc. Natl. Acad. Sci. USA 104, 8791-8796, 2007) was in general agreement with our study of the structure and function of the N-terminal domain of Tetrahymena telomerase reverse transcriptase. However, the two studies disagreed on the effect of a mutation of Trp187 on catalysis, with our study reporting a severe reduction in activity. Upon sequencing the entire gene encoding our W187A mutant, we found that it had a second distant mutation (R812W) in motif C of the reverse transcriptase domain, and we demonstrated that it was the mutation at position 812 that abolished catalytic activity. In addition, we confirmed that authentic W187A telomerase has catalytic activity similar to that of wild-type telomerase. Both studies concur that Trp187 is physically close to the primer-binding site, and in fact Romi et al. have mapped Trp187 as a site of photo-cross-linking to a telomeric DNA primer. We gratefully acknowledge the work of Arthur J. Zaug (HHMI, University of Colorado-Boulder) in resolving this discrepancy.

References

  1. Greider, C.W. & Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    Article  CAS  Google Scholar 

  2. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  Google Scholar 

  3. Lingner, J. & Cech, T.R. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc. Natl. Acad. Sci. USA 93, 10712–10717 (1996).

    Article  CAS  Google Scholar 

  4. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  Google Scholar 

  5. Nakamura, T.M. & Cech, T.R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

    Article  CAS  Google Scholar 

  6. Yap, W.H., Yeoh, E., Brenner, S. & Venkatesh, B. Cloning and expression of the reverse transcriptase component of pufferfish (Fugu rubripes) telomerase. Gene 353, 207–217 (2005).

    Article  CAS  Google Scholar 

  7. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498–502 (1997).

    Article  CAS  Google Scholar 

  8. Bryan, T.M., Goodrich, K.J. & Cech, T.R. Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol. Cell 6, 493–499 (2000).

    Article  CAS  Google Scholar 

  9. Lai, C.K., Mitchell, J.R. & Collins, K. RNA binding domain of telomerase reverse transcriptase. Mol. Cell. Biol. 21, 990–1000 (2001).

    Article  CAS  Google Scholar 

  10. Lue, N.F. A physical and functional constituent of telomerase anchor site. J. Biol. Chem. 280, 26586–26591 (2005).

    Article  CAS  Google Scholar 

  11. Friedman, K.L., Heit, J.J., Long, D.M. & Cech, T.R. N-terminal domain of yeast telomerase reverse transcriptase: recruitment of Est3p to the telomerase complex. Mol. Biol. Cell 14, 1–13 (2003).

    Article  CAS  Google Scholar 

  12. Friedman, K.L. & Cech, T.R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13, 2863–2874 (1999).

    Article  CAS  Google Scholar 

  13. Xia, J., Peng, Y., Mian, I.S. & Lue, N.F. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20, 5196–5207 (2000).

    Article  CAS  Google Scholar 

  14. Jacobs, S.A., Podell, E.R., Wuttke, D.S. & Cech, T.R. Soluble domains of telomerase reverse transcriptase identified by high-throughput screening. Protein Sci. 14, 2051–2058 (2005).

    Article  CAS  Google Scholar 

  15. O'Connor, C.M., Lai, C.K. & Collins, K. Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J. Biol. Chem. 280, 17533–17539 (2005).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 (1996).

    Article  CAS  Google Scholar 

  17. Harrison, A. et al. Recognizing the fold of a protein structure. Bioinformatics 19, 1748–1759 (2003).

    Article  CAS  Google Scholar 

  18. Shindyalov, I.N. & Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747 (1998).

    Article  CAS  Google Scholar 

  19. Kawabata, T. MATRAS: A program for protein 3D structure comparison. Nucleic Acids Res. 31, 3367–3369 (2003).

    Article  CAS  Google Scholar 

  20. Armbruster, B.N., Banik, S.S., Guo, C., Smith, A.C. & Counter, C.M. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 21, 7775–7786 (2001).

    Article  CAS  Google Scholar 

  21. Moriarty, T.J., Huard, S., Dupuis, S. & Autexier, C. Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol. Cell. Biol. 22, 1253–1265 (2002).

    Article  CAS  Google Scholar 

  22. Bryan, T.M., Goodrich, K.J. & Cech, T.R. Tetrahymena telomerase is active as a monomer. Mol. Biol. Cell 14, 4794–4804 (2003).

    Article  CAS  Google Scholar 

  23. Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 (2003).

    Article  CAS  Google Scholar 

  24. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  25. Bryan, T.M., Goodrich, K.J. & Cech, T.R. A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity. J. Biol. Chem. 275, 24199–24207 (2000).

    Article  CAS  Google Scholar 

  26. Hammond, P.W., Lively, T.N. & Cech, T.R. The anchor site of telomerase from Euplotes aediculatus revealed by photo-cross-linking to single- and double-stranded DNA primers. Mol. Cell. Biol. 17, 296–308 (1997).

    Article  CAS  Google Scholar 

  27. Moriarty, T.J., Marie-Egyptienne, D.T. & Autexier, C. Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol. Cell. Biol. 24, 3720–3733 (2004).

    Article  CAS  Google Scholar 

  28. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579–585 (1999).

    Article  CAS  Google Scholar 

  29. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).

    Article  CAS  Google Scholar 

  30. Moriarty, T.J., Ward, R.J., Taboski, M.A. & Autexier, C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol. Biol. Cell 16, 3152–3161 (2005).

    Article  CAS  Google Scholar 

  31. Lue, N.F. et al. Telomerase can act as a template- and RNA-independent terminal transferase. Proc. Natl. Acad. Sci. USA 102, 9778–9783 (2005).

    Article  CAS  Google Scholar 

  32. Lee, S.R., Wong, J.M. & Collins, K. Human telomerase reverse transcriptase motifs required for elongation of a telomeric substrate. J. Biol. Chem. 278, 52531–52536 (2003).

    Article  CAS  Google Scholar 

  33. Greider, C.W. Telomerase is processive. Mol. Cell. Biol. 11, 4572–4580 (1991).

    Article  CAS  Google Scholar 

  34. Brodersen, D.E., Clemons, W.M., Jr., Carter, A.P., Wimberly, B.T. & Ramakrishnan, V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J. Mol. Biol. 316, 725–768 (2002).

    Article  CAS  Google Scholar 

  35. Klein, D.J., Moore, P.B. & Steitz, T.A. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340, 141–177 (2004).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  38. Terwilliger, T.C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 38–44 (2003).

    Article  Google Scholar 

  39. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  40. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  41. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  42. Szewczak, A.A., Podell, E.R., Bevilacqua, P.C. & Cech, T.R. Thermodynamic stability of the P4–P6 domain RNA tertiary structure measured by temperature gradient gel electrophoresis. Biochemistry 37, 11162–11170 (1998).

    Article  CAS  Google Scholar 

  43. Lu, G. TOP: A new method for protein structure comparisons and similarity searches. J. Appl. Crystallogr. 33, 176–183 (2000).

    Article  CAS  Google Scholar 

  44. Nicholls, A., Sharp, K. & Honig, B. Graphical representation and analysis of structural properties. PROTEINS, Structure, Function and Genetics 11, 281 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.J. Zaug and A. Gooding for help with X-ray diffraction data collection, the Advanced Light Source for beam time and helpful advice and L. Chen, D.S. Wuttke and M. Sousa for helpful discussions. S.A.J. was a Damon Runyon fellow supported by the Damon Runyon Cancer Research Foundation (grant DRG-#1821-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R Cech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SDS gel showing expression levels of the mutant TERT proteins (PDF 3554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, S., Podell, E. & Cech, T. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13, 218–225 (2006). https://doi.org/10.1038/nsmb1054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing