Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover

Abstract

In mammalian cells, the enzymatic pathways involved in cytoplasmic mRNA decay are incompletely defined. In this study, we have used two approaches to disrupt activities of deadenylating and/or decapping enzymes to monitor effects on mRNA decay kinetics and trap decay intermediates. Our results show that deadenylation is the key first step that triggers decay of both wild-type stable and nonsense codon–containing unstable β-globin mRNAs in mouse NIH3T3 fibroblasts. PAN2 and CCR4 are the major poly(A) nucleases active in cytoplasmic deadenylation that have biphasic kinetics, with PAN2 initiating deadenylation followed by CCR4-mediated poly(A) shortening. DCP2-mediated decapping takes place after deadenylation and may serve as a backup mechanism for triggering mRNA decay when initial deadenylation by PAN2 is compromised. Our findings reveal a functional link between deadenylation and decapping and help to define in vivo pathways for mammalian cytoplasmic mRNA decay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterizations of mammalian poly(A) nucleases.
Figure 2: The three major poly(A) nucleases are nuclear-cytoplasmic shuttling proteins.
Figure 3: Deadenylation has biphasic kinetics in mammalian cells.
Figure 4: Identification of poly(A) nucleases involved in the deadenylation of stable mRNA.
Figure 5: Functional analysis of poly(A) nucleases by siRNA-mediated gene knockdown.
Figure 6: Identification of poly(A) nucleases involved in the deadenylation of unstable, nonsense codon–containing mRNA.
Figure 7: Effects of DCP2 knockdown by RNAi combined with expression of dominant-negative poly(A) nuclease mutants on deadenylation and decay of stable β-globin mRNA.
Figure 8: Effects of DCP2 knockdown by RNAi combined with expression of dominant-negative poly(A) nuclease mutants on deadenylation and decay of unstable nonsense codon–containing β-globin mRNA, as in Figure 7.
Figure 9: A model illustrating enzymatic steps for triggering decay of cytoplasmic mRNA in mammalian cells.

Similar content being viewed by others

References

  1. Mitchell, P. & Tollervey, D. mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10, 193–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wilusz, C.J., Wormington, M. & Peltz, S.W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Fritz, D.T., Bergman, N., Kilpatrick, W.J., Wilusz, C.J. & Wilusz, J. Messenger RNA decay in mammalian cells: the exonuclease perspective. Cell Biochem. Biophys. 41, 265–278 (2004).

    Article  PubMed  Google Scholar 

  4. Meyer, S., Temme, C. & Wahle, E. Messenger RNA turnover in eukaryotes: Pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Daugeron, M.-C., Mauxion, F. & Seraphin, B. The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29, 2448–2455 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boeck, R. et al. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, C., Tarun, S., Jr . Boeck, R. & Sachs, A. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 5744–5753 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

    CAS  PubMed  Google Scholar 

  10. Gao, M., Fritz, D.T., Ford, L.P. & Wilusz, J. Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Mol. Cell 5, 479–488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dehlin, E., Wormington, M., Korner, C.G. & Wahle, E. Cap-dependent deadenylation of mRNA. EMBO J. 19, 1079–1086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Körner, C.G. & Wahle, E. Poly(A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease. J. Biol. Chem. 272, 10448–10456 (1997).

    Article  PubMed  Google Scholar 

  13. Muhlrad, D. & Parker, R. Premature translational termination triggers mRNA decapping. Nature 370, 578–581 (1994).

    CAS  PubMed  Google Scholar 

  14. Cao, D. & Parker, R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113, 533–545 (2003).

    CAS  PubMed  Google Scholar 

  15. Mitchell, P. & Tollervey, D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′ → 5′ degradation. Mol. Cell 11, 1405–1413 (2003).

    CAS  PubMed  Google Scholar 

  16. Chen, C.-Y.A. & Shyu, A.-B. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol. Cell. Biol. 23, 4805–4813 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Couttet, P. & Grange, T. Premature termination codons enhance mRNA decapping in human cells. Nucleic Acids Res. 32, 488–494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, T.-C. et al. UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev. 18, 2010–2023 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shyu, A.-B., Greenberg, M.E. & Belasco, J.G. The c-fos mRNA is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3, 60–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Winzen, R. et al. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 18, 4969–4980 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, N., Loflin, P., Chen, C.-Y.A. & Shyu, A.-B. A broader role for AU-rich element-mediated mRNA turnover revealed by a new transcriptional pulse strategy. Nucleic Acids Res. 26, 558–565 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dupressoir, A. et al. Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics [online] 2, 9 (2001)(10.1186/1471-2164-2-9).

    Article  CAS  Google Scholar 

  23. Albert, T.K. et al. Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res. 28, 809–817 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, C.-Y.A., Xu, N., Zhu, W. & Shyu, A.-B. Functional dissection of hnRNP D suggests that nuclear import is required before hnRNP D can modulate mRNA turnover in the cytoplasm. RNA 10, 669–680 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shyu, A.B. & Wilkinson, M.F. The double lives of shuttling mRNA binding proteins. Cell 102, 135–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kudo, N. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 96, 9112–9117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Mendell, J.T., Medghalchi, S.M., Lake, R.G., Noensie, E.N. & Dietz, H.C. Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell. Biol. 20, 8944–8957 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren, Y.-G., Martinez, J. & Virtanen, A. Identification of the active site of poly(A)-specific ribonuclease by site-directed mutagenesis and Fe2+-mediated cleavage. J. Biol. Chem. 277, 5982–5987 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Baggs, J.E. & Green, C.B. Nocturnin, a deadenylase in Xenopus laevis retina: A mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13, 189–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Martinez, J., Ren, Y.-G., Nilsson, P., Ehrenberg, M. & Virtanen, A. The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J. Biol. Chem. 276, 27923–27929 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Loflin, P.T., Chen, C.-Y.A., Xu, N. & Shyu, A.-B. Transcriptional pulsing approaches for analysis of mRNA turnover in mammalian cells. Methods 17, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Loflin, P.T., Chen, C.-Y.A. & Shyu, A.-B. Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev. 13, 1884–1897 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer, N. & Weis, K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788–2797 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A. & Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717–1727 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cougot, N., Babajko, S. & Seraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31–40 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uchida, N., Hoshino, S. & Katada, T. Identification of a human -cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 279, 1383–1391 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Khanna, R. & Kiledjian, M. Poly(A)-binding-protein-mediated regulation of hDcp2 decapping in vitro. EMBO J. 23, 1968–1976 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andrei, M.A. et al. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11, 717–727 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viswanathan, P., Ohn, T., Chiang, Y.-C., Chen, J. & Denis, C.L. Mouse CAF1 can function as a processive deadenylase/3'-5′-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J. Biol. Chem. 279, 23988–23995 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Temme, C., Zaessinger, S., Meyer, S., Simonelig, M. & Wahle, E. A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J. 23, 2862–2871 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. & Ohno, S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, C.Y. & Shyu, A.B. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14, 8471–8482 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shyu, A.-B., Garcia-Sanz, J.A. & Mullner, E. Analysis of mRNA decay in mammalian cells. in The Immunology Methods Manual (ed. Lefkovits, I.) 450–62 (Academic Press, London, 1996).

    Google Scholar 

  46. Shyu, A.-B., Belasco, J.G. & Greenberg, M.G. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5, 221–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Peng, S.-S., Chen, C.-Y., Xu, N. & Shyu, A.-B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Kulmacz, J. Lever and A. van Hoof for critical reading of the manuscript and their comments and Y. Tao for technical assistance with the heterokaryon experiments. This work was supported by a grant from the US National Institutes of Health (GM46454) to A.-B.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Bin Shyu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Catalytically inactive poly(A) nuclease mutants remain able to associate with their corresponding partners in vivo. (PDF 3028 kb)

Supplementary Fig. 2

Semi-log plots showing mRNA decay kinetics. (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, A., Chang, TC., Yamashita, Y. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12, 1054–1063 (2005). https://doi.org/10.1038/nsmb1016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing