Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating the construction and demolition of the synaptonemal complex

Subjects

Abstract

The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of meiosis and SC structure.
Figure 2: SC initiation and extension in yeast.
Figure 3: SC disassembly in yeast.
Figure 4: SC disassembly in mice.
Figure 5: SC disassembly in worms.

Similar content being viewed by others

References

  1. Nagaoka, S.I., Hassold, T.J. & Hunt, P.A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moses, M.J. Chromosomal structures in crayfish spermatocytes. J. Biophys. Biochem. Cytol. 2, 215–218 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moses, M.J. The relation between the axial complex of meiotic prophase chromosomes and chromosome pairing in a salamander (Plethodon cinereus). J. Biophys. Biochem. Cytol. 4, 633–638 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ishiguro, K. et al. Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev. 28, 594–607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boateng, K.A., Bellani, M.A., Gregoretti, I.V., Pratto, F. & Camerini-Otero, R.D. Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev. Cell 24, 196–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McKim, K.S. et al. Meiotic synapsis in the absence of recombination. Science 279, 876–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Dernburg, A.F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Romanienko, P.J. & Camerini-Otero, R.D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal, S. & Roeder, G.S. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255 (2000). This paper demonstrates that SC assembly requires Zip3, and synapsis initiates at sites designated to be crossovers.

    Article  CAS  PubMed  Google Scholar 

  11. Sym, M., Engebrecht, J.A. & Roeder, G.S. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Voelkel-Meiman, K. et al. Separable crossover-promoting and crossover-constraining aspects of Zip1 activity during budding yeast meiosis. PLoS Genet. 11, e1005335 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Page, S.L. & Hawley, R.S. c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev. 15, 3130–3143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins, K.A. et al. Corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila. Genetics 198, 219–228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Page, S.L. et al. Corona is required for higher-order assembly of transverse filaments into full-length synaptonemal complex in Drosophila oocytes. PLoS Genet. 4, e1000194 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. de Vries, F.A. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamer, G. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J. Cell Sci. 121, 2445–2451 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bolcun-Filas, E. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell Biol. 176, 741–747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Colaiácovo, M.P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5, 463–474 (2003).

    Article  PubMed  Google Scholar 

  20. Smolikov, S., Schild-Prüfert, K. & Colaiácovo, M.P. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis. PLoS Genet. 5, e1000669 (2009). This paper uses yeast-two hybrid assays to determine the topology of the SC components in the complex in worms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Smolikov, S. et al. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis. Genetics 176, 2027–2033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moses, M.J. Synaptinemal complex. Annu. Rev. Genet. 2, 363–412 (1968).

    Article  Google Scholar 

  23. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein, P. Multiple synaptonemal complexes (polycomplexes): origin, structure and function. Cell Biol. Int. Rep. 11, 759–796 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Newman, J.R., Wolf, E. & Kim, P.S. A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 13203–13208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, J.G. et al. Localization of the N-terminus of SCP1 to the central element of the synaptonemal complex and evidence for direct interactions between the N-termini of SCP1 molecules organized head-to-head. Exp. Cell Res. 226, 11–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Davies, O.R., Maman, J.D. & Pellegrini, L. Structural analysis of the human SYCE2-TEX12 complex provides molecular insights into synaptonemal complex assembly. Open Biol. 2, 120099 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bolcun-Filas, E. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet. 5, e1000393 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schramm, S. et al. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet. 7, e1002088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacQueen, A.J., Colaiácovo, M.P., McDonald, K. & Villeneuve, A.M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Couteau, F. & Zetka, M. HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans. Genes Dev. 19, 2744–2756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhuiyan, H. & Schmekel, K. Meiotic chromosome synapsis in yeast can occur without spo11-induced DNA double-strand breaks. Genetics 168, 775–783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baudat, F., Manova, K., Yuen, J.P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Martinez-Perez, E. & Villeneuve, A.M. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev. 19, 2727–2743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsubouchi, T., Macqueen, A.J. & Roeder, G.S. Initiation of meiotic chromosome synapsis at centromeres in budding yeast. Genes Dev. 22, 3217–3226 (2008). This paper shows that the SC is initially assembled at centromeres through a recombination-independent mechanism, thus suggesting that there are two classes of SC assembly in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurdzo, E.L. & Dawson, D.S. Centromere pairing: tethering partner chromosomes in meiosis I. FEBS J. 282, 2458–2470 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Macqueen, A.J. & Roeder, G.S. Fpr3 and Zip3 ensure that initiation of meiotic recombination precedes chromosome synapsis in budding yeast. Curr. Biol. 19, 1519–1526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Falk, J.E., Chan, A.C., Hoffmann, E. & Hochwagen, A. A Mec1- and PP4-dependent checkpoint couples centromere pairing to meiotic recombination. Dev. Cell 19, 599–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chua, P.R. & Roeder, G.S. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Tsubouchi, T., Zhao, H. & Roeder, G.S. The meiosis-specific zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with zip2. Dev. Cell 10, 809–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Shinohara, M., Oh, S.D., Hunter, N. & Shinohara, A. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat. Genet. 40, 299–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Fung, J.C., Rockmill, B., Odell, M. & Roeder, G.S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Shinohara, M., Hayashihara, K., Grubb, J.T., Bishop, D.K. & Shinohara, A. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. J. Cell Sci. 128, 1494–1506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, C.H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eichinger, C.S. & Jentsch, S. Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proc. Natl. Acad. Sci. USA 107, 11370–11375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Humphryes, N. et al. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet. 9, e1003194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voelkel-Meiman, K. et al. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet. 9, e1003837 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kauppi, L. et al. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27, 873–886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thacker, D., Mohibullah, N., Zhu, X. & Keeney, S. Homologue engagement controls meiotic DNA break number and distribution. Nature 510, 241–246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fraune, J., Schramm, S., Alsheimer, M. & Benavente, R. The mammalian synaptonemal complex: protein components, assembly and role in meiotic recombination. Exp. Cell Res. 318, 1340–1346 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Christophorou, N., Rubin, T. & Huynh, J.-R. Synaptonemal complex components promote centromere pairing in pre-meiotic germ cells. PLoS Genet. 9, e1004012 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lake, C.M. & Hawley, R.S. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu. Rev. Physiol. 74, 425–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Joyce, E.F., Apostolopoulos, N., Beliveau, B.J. & Wu, C.T. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development. PLoS Genet. 9, e1004013 (2013). Refs. 52 and 54 show that in Drosophila females, meiotic chromosome pairing is not an extension of somatic pairing and is completed before meiotic prophase I. In addition, the SC begins to assemble at centromeres in these premeiotic cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dernburg, A.F., Sedat, J.W. & Hawley, R.S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86, 135–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Takeo, S., Lake, C.M., Morais-de-Sá, E., Sunkel, C.E. & Hawley, R.S. Synaptonemal complex-dependent centromeric clustering and the initiation of synapsis in Drosophila oocytes. Curr. Biol. 21, 1845–1851 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Tanneti, N.S., Landy, K., Joyce, E.F. & McKim, K.S. A pathway for synapsis initiation during zygotene in Drosophila oocytes. Curr. Biol. 21, 1852–1857 (2011).Refs. 56 and 57 demonstrate that synapsis begins with SC-mediated centromere clustering in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  58. MacQueen, A.J. et al. Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123, 1037–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phillips, C.M. et al. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat. Cell Biol. 11, 934–942 (2009). This paper identifies the pairing centers and demonstrates that these regions are responsible for pairing and synapsis in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139, 907–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Penkner, A.M. et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell 139, 920–933 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Baudrimont, A. et al. Leptotene/zygotene chromosome movement via the SUN/KASH protein bridge in Caenorhabditis elegans. PLoS Genet. 6, e1001219 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rog, O. & Dernburg, A.F. Chromosome pairing and synapsis during Caenorhabditis elegans meiosis. Curr. Opin. Cell Biol. 25, 349–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shibuya, H. et al. MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell 163, 1252–1266 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Weiner, B.M. & Kleckner, N. Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77, 977–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Rosenberg, S.C. & Corbett, K.D. The multifaceted roles of the HORMA domain in cellular signaling. J. Cell Biol. 211, 745–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goodyer, W. et al. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev. Cell 14, 263–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Couteau, F., Nabeshima, K., Villeneuve, A. & Zetka, M. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr. Biol. 14, 585–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Silva, N. et al. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev. Cell 31, 503–511 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, W. et al. HAL-2 promotes homologous pairing during Caenorhabditis elegans meiosis by antagonizing inhibitory effects of synaptonemal complex precursors. PLoS Genet. 8, e1002880 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Smolikov, S., Schild-Prüfert, K. & Colaiácovo, M.P. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis. PLoS Genet. 4, e1000088 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Brockway, H., Balukoff, N., Dean, M., Alleva, B. & Smolikove, S. The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of Caenorhabditis elegans. PLoS Genet. 10, e1004757 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Leung, W.K. et al. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J. Cell Biol. 211, 785–793 (2015). This paper provides evidence that a positive feedback mechanism may drive SC extension, results supporting the well-known self-assembly properties of the SC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Voelkel-Meiman, K., Moustafa, S.S., Lefrançois, P., Villeneuve, A.M. & MacQueen, A.J. Full-length synaptonemal complex grows continuously during meiotic prophase in budding yeast. PLoS Genet. 8, e1002993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmekel, K. & Daneholt, B. The central region of the synaptonemal complex revealed in three dimensions. Trends Cell Biol. 5, 239–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Carpenter, A.T. Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma 51, 157–182 (1975).

    Article  CAS  PubMed  Google Scholar 

  77. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Jordan, P. et al. Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast meiosis. Genes Dev. 23, 2237–2251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sourirajan, A. & Lichten, M. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 22, 2627–2632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chu, S. & Herskowitz, I. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685–696 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Parra, M.T. et al. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J. Cell Sci. 116, 961–974 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Jordan, P.W., Karppinen, J. & Handel, M.A. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J. Cell Sci. 125, 5061–5072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, F. & Handel, M.A. Regulation of the meiotic prophase I to metaphase I transition in mouse spermatocytes. Chromosoma 117, 471–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allen, J.W. et al. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 104, 414–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Dix, D.J. et al. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124, 4595–4603 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Zhu, D., Dix, D.J. & Eddy, E.M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 124, 3007–3014 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, F., Palmer, K. & Handel, M.A. Mutation of Eif4g3, encoding a eukaryotic translation initiation factor, causes male infertility and meiotic arrest of mouse spermatocytes. Development 137, 1699–1707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Resnick, T.D. et al. Mutations in the chromosomal passenger complex and the condensin complex differentially affect synaptonemal complex disassembly and metaphase I configuration in Drosophila female meiosis. Genetics 181, 875–887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ivanovska, I., Khandan, T., Ito, T. & Orr-Weaver, T.L. A histone code in meiosis: the histone kinase, NHK-1, is required for proper chromosomal architecture in Drosophila oocytes. Genes Dev. 19, 2571–2582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nabeshima, K., Villeneuve, A.M. & Colaiácovo, M.P. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J. Cell Biol. 168, 683–689 (2005). This paper determines that the crossover is the symmetry-breaking event triggering the asymmetric disassembly of the SC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhalla, N., Wynne, D.J., Jantsch, V. & Dernburg, A.F. ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans. PLoS Genet. 4, e1000235 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Yokoo, R. et al. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 149, 75–87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hillers, K.J. & Villeneuve, A.M. Chromosome-wide control of meiotic crossing over in C. elegans. Curr. Biol. 13, 1641–1647 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Martinez-Perez, E. et al. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev. 22, 2886–2901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rogers, E., Bishop, J.D., Waddle, J.A., Schumacher, J.M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 157, 219–229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Clemons, A.M. et al. Akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. Mol. Biol. Cell 24, 1053–1067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. de Carvalho, C.E. et al. LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev. 22, 2869–2885 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tzur, Y.B. et al. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol. 10, e1001378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiao, H. et al. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet. 8, e1002790 (2012). This paper uses super-resolution microscopy to determine when and where the SC assembles and disassembles in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kemp, B., Boumil, R.M., Stewart, M.N. & Dawson, D.S. A role for centromere pairing in meiotic chromosome segregation. Genes Dev. 18, 1946–1951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bisig, C.G. et al. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS Genet. 8, e1002701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gutiérrez-Caballero, C., Cebollero, L.R. & Pendás, A.M. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet. 28, 351–360 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Hawley, R.S. & Theurkauf, W.E. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 9, 310–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Gladstone, M.N., Obeso, D., Chuong, H. & Dawson, D.S. The synaptonemal complex protein Zip1 promotes bi-orientation of centromeres at meiosis I. PLoS Genet. 5, e1000771 (2009). This paper demonstrates that the persistence of Zip1 at centromeres is required to segregate nonexchange chromosomes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hughes, S.E. et al. Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLoS Genet. 5, e1000348 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sym, M. & Roeder, G.S. Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128, 455–466 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Lake, C.M. et al. Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila. eLife 4, e08287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rockmill, B. & Roeder, G.S. Meiosis in asynaptic yeast. Genetics 126, 563–574 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hollingsworth, N.M., Goetsch, L. & Byers, B. The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61, 73–84 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Bailis, J.M. & Roeder, G.S. Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev. 12, 3551–3563 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yuan, L. et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5, 73–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Yang, F. et al. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J. Cell Biol. 173, 497–507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Costa, Y. et al. Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J. Cell Sci. 118, 2755–2762 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Manheim, E.A. & McKim, K.S. The synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr. Biol. 13, 276–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Zetka, M.C., Kawasaki, I., Strome, S. & Müller, F. Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev. 13, 2258–2270 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Guo (Stowers Institute for Medical Research) for providing an electron microscopy image and A. Miller for editorial assistance and figure preparation. R.S.H. is supported by the Stowers Institute for Medical Research and is supported as an American Cancer Society Research Professor, by the award 118857-RP-05-086-06-COUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Scott Hawley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahoon, C., Hawley, R. Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 23, 369–377 (2016). https://doi.org/10.1038/nsmb.3208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing