Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex

Abstract

The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components—Snu17p, Bud13p and Pml1p—that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the RES core complex.
Figure 2: Interface between components of the RES core complex.
Figure 3: Assembly of the RES core complex is highly cooperative.
Figure 4: Structural basis of the cooperative nature of the RES complex.
Figure 5: The cRES complex binds to RNA.
Figure 6: Structural comparison of the RES core complex to dimeric RRM complexes and human RES.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Will, C.L. & Luhrmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a3003707 (2011).

    Article  CAS  Google Scholar 

  2. Brow, D.A. Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J. 23, 4847–4856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gottschalk, A., Bartels, C., Neubauer, G., Luhrmann, R. & Fabrizio, P. A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly. Mol. Cell. Biol. 21, 3037–3046 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tuo, S., Nakashima, K. & Pringle, J.R. Apparent defect in yeast bud-site selection due to a specific failure to splice the pre-mRNA of a regulator of cell-type-specific transcription. PLoS ONE 7, e47621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scherrer, F.W. Jr. & Spingola, M. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. RNA 12, 1361–1372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmidlin, T. et al. Single-gene deletions that restore mating competence to diploid yeast. FEMS Yeast Res. 8, 276–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, Y., Chen, C. & Johansson, M.J. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res. 41, 5669–5678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spingola, M., Armisen, J. & Ares, M. Jr. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p. Nucleic Acids Res. 32, 1242–1250 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hausmann, S. et al. Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J. Biol. Chem. 283, 31706–31718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Q. & Rymond, B.C. Rds3p is required for stable U2 U2 snRNP recruitment to the splicing apparatus. Mol. Cell. Biol. 23, 7339–7349 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Q., He, J., Lynn, B. & Rymond, B.C. Interactions of the yeast SF3b splicing factor. Mol. Cell. Biol. 25, 10745–10754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brooks, M.A. et al. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res. 37, 129–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 218–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Trowitzsch, S., Weber, G., Luhrmann, R. & Wahl, M.C. An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex. J. Biol. Chem. 283, 32317–32327 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Collinet, B. et al. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project. J. Struct. Biol. 175, 147–158 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Trowitzsch, S., Weber, G., Luhrmann, R. & Wahl, M.C. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J. Mol. Biol. 385, 531–541 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Dinkel, H. et al. ELM: the database of eukaryotic linear motifs. Nucleic Acids Res. 40, D242–D251 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Korneta, I. & Bujnicki, J.M. Intrinsic disorder in the human spliceosomal proteome. PLoS Comput. Biol. 8, e1002641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kielkopf, C.L., Rodionova, N.A., Green, M.R. & Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106, 595–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Corsini, L. et al. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat. Struct. Mol. Biol. 14, 620–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol. Cell 11, 965–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Thickman, K.R., Swenson, M.C., Kabogo, J.M., Gryczynski, Z. & Kielkopf, C.L. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein-protein interactions among pre-mRNA splicing factors. J. Mol. Biol. 356, 664–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adam, S.A., Nakagawa, T., Swanson, M.S., Woodruff, T.K. & Dreyfuss, G. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol. Cell. Biol. 6, 2932–2943 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Ohrt, T. et al. Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. RNA 18, 1244–1256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Warkocki, Z. et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat. Struct. Mol. Biol. 16, 1237–1243 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Gozani, O., Feld, R. & Reed, R. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev. 10, 233–243 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. McPheeters, D.S. & Muhlenkamp, P. Spatial organization of protein-RNA interactions in the branch site-3′ splice site region during pre-mRNA splicing in yeast. Mol. Cell. Biol. 23, 4174–4186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Will, C.L. et al. A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J. 20, 4536–4546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schellenberg, M.J. et al. Crystal structure of a core spliceosomal protein interface. Proc. Natl. Acad. Sci. USA 103, 1266–1271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuwasako, K. et al. Complex assembly mechanism and an RNA-binding mode of the human p14–SF3b155 spliceosomal protein complex identified by NMR solution structure and functional analyses. Proteins 71, 1617–1636 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Tumasz, S., Richie, A.C., Clos, L.J. II, Brow, D.A. & Butcher, S.E. A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop. Nucleic Acids Res. 39, 7837–7847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Netter, C., Weber, G., Benecke, H. & Wahl, M.C. Functional stabilization of an RNA recognition motif by a noncanonical N-terminal expansion. RNA 15, 1305–1313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Avis, J.M. et al. Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. J. Mol. Biol. 257, 398–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Golovanov, A.P., Hautbergue, G.M., Tintaru, A.M., Lian, L.Y. & Wilson, S.A. The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA. RNA 12, 1933–1948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cléry, A. et al. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nat. Struct. Mol. Biol. 18, 443–450 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Singh, M. et al. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol. Cell 47, 16–26 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weber, G., Trowitzsch, S., Kastner, B., Luhrmann, R. & Wahl, M.C. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 29, 4172–4184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varani, L. et al. The NMR structure of the 38 kDa U1A protein–PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein. Nat. Struct. Biol. 7, 329–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Williamson, J.R. Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4, 458–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Berglund, J.A., Abovich, N. & Rosbash, M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 12, 858–867 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corsini, L. et al. Dimerization and protein binding specificity of the U2AF homology motif of the splicing factor Puf60. J. Biol. Chem. 284, 630–639 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. De Guzman, R.N., Goto, N.K., Dyson, H.J. & Wright, P.E. Structural basis for cooperative transcription factor binding to the CBP coactivator. J. Mol. Biol. 355, 1005–1013 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Brüschweiler, S. et al. Direct observation of the dynamic process underlying allosteric signal transmission. J. Am. Chem. Soc. 131, 3063–3068 (2009).

    Article  PubMed  CAS  Google Scholar 

  47. Hom, R.A. et al. Molecular mechanism of MLL PHD3 and RNA recognition by the Cyp33 RRM domain. J. Mol. Biol. 400, 145–154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Daubner, G.M., Clery, A. & Allain, F.H. RRM-RNA recognition: NMR or crystallography.and new findings. Curr. Opin. Struct. Biol. 23, 100–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Daubner, G.M., Clery, A., Jayne, S., Stevenin, J. & Allain, F.H. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 31, 162–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Oberstrass, F.C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Tsuda, K. et al. Structural basis for the dual RNA-recognition modes of human Tra2-beta RRM. Nucleic Acids Res. 39, 1538–1553 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Cléry, A. et al. Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proc. Natl. Acad. Sci. USA 110, E2802–E2811 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Williams, S.G. & Hall, K.B. Binding affinity and cooperativity control U2B″/snRNA/U2A′ RNP formation. Biochemistry 53, 3727–3737 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Williams, S.G. & Hall, K.B. Linkage and allostery in snRNP protein/RNA complexes. Biochemistry 53, 3529–3539 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  57. Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ɛ. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J. Am. Chem. Soc. 115, 11054–11055 (1993).

    Article  CAS  Google Scholar 

  58. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  59. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  60. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Yao, L., Ying, J. & Bax, A. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins. J. Biomol. NMR 43, 161–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Permi, P., Heikkinen, S., Kilpelainen, I. & Annila, A. Measurement of 1JNC′ and 2JHNC′ couplings from spin-state-selective two-dimensional correlation spectrum. J. Magn. Reson. 140, 32–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Zweckstetter, M. NMR: prediction of molecular alignment from structure using the PALES software. Nat. Protoc. 3, 679–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Pagano, K. et al. Direct and allosteric inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule. PLoS ONE 7, e36990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Güntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  68. Nederveen, A.J. et al. RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59, 662–672 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yean, S.L. & Lin, R.J. U4 small nuclear RNA dissociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. Mol. Cell. Biol. 11, 5571–5577 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Moore, M.J. & Sharp, P.A. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256, 992–997 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Silverman, S.K. & Baum, D.A. Use of deoxyribozymes in RNA research. Methods Enzymol. 469, 95–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Urlaub, H., Hartmuth, K., Kostka, S., Grelle, G. & Luhrmann, R. A general approach for identification of RNA-protein cross-linking sites within native human spliceosomal small nuclear ribonucleoproteins (snRNPs). Analysis of RNA-protein contacts in native U1 and U4/U6.U5 snRNPs. J. Biol. Chem. 275, 41458–41468 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Center 860 (project B2 to M.Z.) and the DFG Research Unit 806 (project A6 to M.C.W. and R.L.). We thank P. Fabrizio and K. Hartmuth for helpful discussions, T. Wandersleben for help with protein preparation and K. Giller for the preparation of expression constructs.

Author information

Authors and Affiliations

Authors

Contributions

P.W. designed the project, conducted protein preparation and ITC and NMR data acquisition and analysis and wrote the paper; C.S. performed immunoprecipitation of Snu17p from spliceosomal complexes; S.X. performed NMR experiments; F.M. performed NMR data analysis; S.T. designed the project and conducted peptide arrays and protein preparation; M.C.W. designed and supervised the project and interpreted data; R.L. designed and supervised the project; S.B. designed and supervised the project; M.Z. designed and supervised the project and wrote the paper.

Corresponding author

Correspondence to Markus Zweckstetter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Comparison of 1H-15N HSQC of cSnu17p in various complexes and secondary chemical shift of free cPml1p and cBud13p.

(a) 1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer, cBud13p–cSnu17p dimer, and cRES. (b) 1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer and cSnu17p monomer. (c) 1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer and cBud13p–cSnu17p dimer. (d) 1H, 15N HSQC of cSnu17p in cPml1p–cSnu17p dimer and cSnu17p monomer. (e) Secondary chemical shift (Δδ) of free cBud13p. (f) Secondary chemical shift (Δδ) of free cPml1p.

.

Supplementary Figure 2 Validation of the cRES structure with residual dipolar couplings (RDCs).

Plots of experimental vs back-calculated RDCs before (upper panel) and after (lower panel) structure refinement with RDCs. RDCs from the C-terminal α-helix (117-126) backbone amides are indicated in red, those of cPml1p in yellow and cBud13p in blue.

Supplementary Figure 3 1H-15N chemical-shift perturbation (CSP) of cSnu17p–cBud13p or cSnu17p–cPml1p when titrated with cPml1p or cBud13p, respectively.

(a) Plot of CSP imposed on cSnu17p–cBud13p dimer when titrated with cPml1p. (b) The aforementioned plot mapped onto the structure of cRES with spheres colored as described above; T49 is indicated (c) Residues that are common between this CSP experiment (when cSnu17p-cBud13 dimer is titrated with cPml1p) and when cRES is titrated with RNA (CUUCAUCUUUUUG) are labeled. (d) Plot of CSP imposed on cSnu17p–cPml1p dimer when titrated with cBud13p. (ef) The aforementioned plot mapped onto the structure of cRES with spheres colored as described above; T49 is indicated. Only 224 to 238 residues of cBud13p are shown for clarity. Significant CSPs were grouped and color-coded into three categories according to: medium (light pink) if 2σ>CSP>1σ, strong (pink) if 3σ>CSP>2σ, very strong (red) if CSP>3σ, were σ is the standard deviation of the mean.

Supplementary Figure 4 Analysis of cSnu17p monomer, cSnu17p–cPml1p dimer, cSnu17p–cBud13p dimer and cRES dynamics.

(a) Plot of residue specific hydrogen-deuterium exchange half-life H-D1/2 for cRES (black), cSnu17p–cPml1p dimer (yellow), cSnu17p–cBud13p dimer (blue), cSnu17p monomer (red). (b) R2 (black) and R (grey) plots (left panel) for the aforementioned complexes. Rex estimates derived from R2 and R difference (right panel). Positions marked with an asterisk correspond to the five most broadened peaks in c). (c) Normalized intensity vs 1H full width at half maximum (FWHM) of 1H, 15N HSQC peaks for the aforementioned complexes and cSnu17p monomer. Intensity values are offset between each group by 1. Please note that both cRES and cSnu17p–cBud13p dimer experience a decrease in the overall tumbling due to apparent increase in size related to peptide binding and/or the presence of C-terminal α-helix. This effect is small in cSnu17p–cPml1p dimer since cPml1p is shorter and C-terminal α-helix is folded. (d) S2 order parameter derived from the chemical shift for the aforementioned complexes.

Supplementary Figure 5 RES-RNA interaction.

(a) 1H, 15N chemical shift perturbation (CSP) imposed on cSnu17p in cSnu17p–cPml1p dimer and in cSnu17p–cBud13p dimer upon titration with CUUCAUCUUUUUG RNA. CSP mapped on the structure of cRES (left of each graph). Significant CSPs were grouped and color-coded into three categories according to: medium (light pink) if 2σ>CSP>1σ, strong (pink) if 3σ>CSP>2σ, very strong (red) if CSP >3σ, were σ is the standard deviation of the mean for the CUUCAUCUUUUUG to cRES titration. Only 224 to 238 residues of cBud13p are shown for clarity. (b) CSP binding curves derived from a representative set of residues experiencing high CSP and residue-averaged dissociation constants (Kd) of CUUCAUUCUUUUUG and all four members of the cRES assembly pathway. (c) Uncropped western blots from main text Fig. 5a. From left to right, Ponceau-stained membrane, peroxidase-anti-peroxidase detection of RES-TAP and autoradiography.

Supplementary Figure 6 1H-15N normalized chemical-shift perturbation (CSP) imposed on cSnu17p in cRES upon titration with various RNAs.

(a) NCSP mapped on the structure of cRES (left of each graph). Significant NCSPs were grouped and color-coded into three categories according to: medium (light pink) if 2σ>NCSP>1σ, strong (pink) if 3σ>NCSP>2σ, very strong (red) if NCS >3σ, were σ is the standard deviation of the mean. Only 224 to 238 residues of cBud13p are shown for clarity. The given RNA sequence is indicated above each graph. (b) CSP binding curves derived from a representative set of residues experiencing high CSP upon ACGAAUUAGA titration and average binding affinity (below). * value derived from CSP of two residues.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wysoczański, P., Schneider, C., Xiang, S. et al. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 21, 911–918 (2014). https://doi.org/10.1038/nsmb.2889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing