Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells

Abstract

Eukaryotic mRNAs with premature translation termination codons (PTCs) are recognized and degraded through a process termed nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 implies a similar basic mechanism of PTC recognition in all eukaryotes. However, while PTC-containing mRNAs in yeast seem to be available to NMD at each round of translation, mammalian NMD has been reported to be restricted to cap-binding complex (CBC)–bound mRNAs during the pioneer round of translation. Here, we compared decay kinetics of two NMD reporter genes in mRNA fractions bound to either CBC or the eukaryotic initiation factor 4E (eIF4E) in human cells and demonstrate that NMD destabilizes eIF4E-bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunopurification of CBC- and eIF4E-mRNPs.
Figure 2: CBP80- and eIF4E-associated PTC-containing TCR-β mRNAs are NMD targets.
Figure 3: CBP80- and eIF4E-associated PTC+ miniμ reporter mRNA is rapidly degraded by NMD when the poly(A) tail is distant from the PTC.
Figure 4: NMD targets both CBC- and eIF4E-bound mRNAs: a graphical summary.

Similar content being viewed by others

References

  1. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  Google Scholar 

  2. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750–764 (2012).

    Article  CAS  Google Scholar 

  3. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  Google Scholar 

  4. Visa, N., Izaurralde, E., Ferreira, J., Daneholt, B. & Mattaj, I.W. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J. Cell Biol. 133, 5–14 (1996).

    Article  CAS  Google Scholar 

  5. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  Google Scholar 

  6. Saulière, J. et al. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19, 1124–1131 (2012).

    Article  Google Scholar 

  7. Baltz, A.G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  Google Scholar 

  8. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  Google Scholar 

  9. Keene, J.D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    Article  CAS  Google Scholar 

  10. Fortes, P. et al. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol. Cell 6, 191–196 (2000).

    Article  CAS  Google Scholar 

  11. Ishigaki, Y., Li, X.J., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  Google Scholar 

  12. Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    Article  CAS  Google Scholar 

  13. Maquat, L.E. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  Google Scholar 

  14. Sato, H. & Maquat, L.E. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin beta. Genes Dev. 23, 2537–2550 (2009).

    Article  CAS  Google Scholar 

  15. Lejeune, F., Ishigaki, Y., Li, X.J. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  Google Scholar 

  16. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  Google Scholar 

  17. Dias, S.M., Wilson, K.F., Rojas, K.S., Ambrosio, A.L. & Cerione, R.A. The molecular basis for the regulation of the cap-binding complex by the importins. Nat. Struct. Mol. Biol. 16, 930–937 (2009).

    Article  CAS  Google Scholar 

  18. Görlich, D. et al. Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32 (1996).

    Article  Google Scholar 

  19. Blachut-Okrasińska, E. et al. Stopped-flow and Brownian dynamics studies of electrostatic effects in the kinetics of binding of 7-methyl-GpppG to the protein eIF4E. Eur. Biophys. J. 29, 487–498 (2000).

    Article  Google Scholar 

  20. Worch, R. et al. Diverse role of three tyrosines in binding of the RNA 5′ cap to the human nuclear cap binding complex. J. Mol. Biol. 385, 618–627 (2009).

    Article  CAS  Google Scholar 

  21. Haghighat, A. & Sonenberg, N. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J. Biol. Chem. 272, 21677–21680 (1997).

    Article  CAS  Google Scholar 

  22. Gross, J.D. et al. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115, 739–750 (2003).

    Article  CAS  Google Scholar 

  23. Kervestin, S. & Jacobson, A. NMD: a multifaceted response to premature translational termination. Nat. Rev. Mol. Cell Biol. 13, 700–712 (2012).

    Article  CAS  Google Scholar 

  24. Schweingruber, C., Rufener, S.C., Zünd, D., Yamashita, A. & Mühlemann, O. Nonsense-mediated mRNA decay—mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbagrm.2013.02.005 (20 February 2013).

  25. Kashima, I. et al. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    Article  CAS  Google Scholar 

  26. Stalder, L. & Mühlemann, O. The meaning of nonsense. Trends Cell Biol. 18, 315–321 (2008).

    Article  CAS  Google Scholar 

  27. Okada-Katsuhata, Y. et al. N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 40, 1251–1266 (2012).

    Article  CAS  Google Scholar 

  28. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    Article  CAS  Google Scholar 

  29. Arias-Palomo, E. et al. The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev. 25, 153–164 (2011).

    Article  CAS  Google Scholar 

  30. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    Article  CAS  Google Scholar 

  31. Fukuhara, N. et al. SMG7 is a 14–3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol. Cell 17, 537–547 (2005).

    Article  CAS  Google Scholar 

  32. Cho, H., Kim, K.M. & Kim, Y.K. Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol. Cell 33, 75–86 (2009).

    Article  CAS  Google Scholar 

  33. Maquat, L.E., Tarn, W.Y. & Isken, O. The pioneer round of translation: features and functions. Cell 142, 368–374 (2010).

    Article  CAS  Google Scholar 

  34. Hwang, J., Sato, H., Tang, Y.L., Matsuda, D. & Maquat, L.E. UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol. Cell 39, 396–409 (2010).

    Article  CAS  Google Scholar 

  35. Hosoda, N., Kim, Y.K., Lejeune, F. & Maquat, L.E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 12, 893–901 (2005).

    Article  CAS  Google Scholar 

  36. Kim, K.M. et al. A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation. Genes Dev. 23, 2033–2045 (2009).

    Article  CAS  Google Scholar 

  37. Oh, N., Kim, K.M., Cho, H., Choe, J. & Kim, Y.K. Pioneer round of translation occurs during serum starvation. Biochem. Biophys. Res. Commun. 362, 145–151 (2007).

    Article  CAS  Google Scholar 

  38. Oh, N., Kim, K.M., Choe, J. & Kim, Y.K. Pioneer round of translation mediated by nuclear cap-binding proteins CBP80/20 occurs during prolonged hypoxia. FEBS Lett. 581, 5158–5164 (2007).

    Article  CAS  Google Scholar 

  39. Schoenberg, D.R. & Maquat, L.E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  CAS  Google Scholar 

  40. Chang, Y.F., Imam, J.S. & Wilkinson, M.E. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  Google Scholar 

  41. Hogg, J.R. & Goff, S.P. Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    Article  CAS  Google Scholar 

  42. Maderazo, A.B., Belk, J.P., He, F. & Jacobson, A. Nonsense-containing mRNAs that accumulate in the absence of a functional nonsense-mediated mRNA decay pathway are destabilized rapidly upon its restitution. Mol. Cell Biol. 23, 842–851 (2003).

    Article  CAS  Google Scholar 

  43. Gao, Q., Das, B., Sherman, F. & Maquat, L.E. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl. Acad. Sci. USA 102, 4258–4263 (2005).

    Article  CAS  Google Scholar 

  44. Gaba, A., Jacobson, A. & Sachs, M.S. Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. Mol. Cell 20, 449–460 (2005).

    Article  CAS  Google Scholar 

  45. Calero, G. et al. Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat. Struct. Biol. 9, 912–917 (2002).

    Article  CAS  Google Scholar 

  46. Wells, S.E., Hillner, P.E., Vale, R.D. & Sachs, A.B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).

    Article  CAS  Google Scholar 

  47. Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).

    Article  CAS  Google Scholar 

  48. McKendrick, L., Thompson, E., Ferreira, J., Morley, S.J. & Lewis, J.D. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap. Mol. Cell Biol. 21, 3632–3641 (2001).

    Article  CAS  Google Scholar 

  49. Lejeune, F., Ranganathan, A.C. & Maquat, L.E. eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol. 11, 992–1000 (2004).

    Article  CAS  Google Scholar 

  50. Eberle, A.B., Stalder, L., Mathys, H., Orozco, R.Z. & Mühlemann, O. Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol. 6, e92 (2008).

    Article  Google Scholar 

  51. Mili, S. & Steitz, J.A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    Article  CAS  Google Scholar 

  52. Bühler, M., Steiner, S., Mohn, F., Paillusson, A. & Mühlemann, O. EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nat. Struct. Mol. Biol. 13, 462–464 (2006).

    Article  Google Scholar 

  53. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

    Article  CAS  Google Scholar 

  54. Funakoshi, Y. et al. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 21, 3135–3148 (2007).

    Article  CAS  Google Scholar 

  55. Ruan, L. et al. Quantitative characterization of Tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation. J. Biol. Chem. 285, 27624–27631 (2010).

    Article  CAS  Google Scholar 

  56. Mühlemann, O. Recognition of nonsense mRNA: towards a unified model. Biochem. Soc. Trans. 36, 497–501 (2008).

    Article  Google Scholar 

  57. Chamieh, H., Ballut, L., Bonneau, F. & Herve, L.H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  CAS  Google Scholar 

  58. Kahvejian, A., Svitkin, Y.V., Sukarieh, R., M'Boutchou, M.N. & Sonenberg, N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19, 104–113 (2005).

    Article  CAS  Google Scholar 

  59. Paillusson, A., Hirschi, N., Vallan, C., Azzalin, C.M. & Mühlemann, O. A GFP-based reporter system to monitor nonsense-mediated mRNA decay. Nucleic Acids Res. 33, e54 (2005).

    Article  Google Scholar 

  60. Yepiskoposyan, H., Aeschimann, F., Nilsson, D., Okoniewski, M. & Mühlemann, O. Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17, 2108–2118 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Izaurralde (Max Planck Institute), N. Sonenberg (McGill University) and Y.-K. Kim (Korea University) for antibodies, and J. Lykke-Andersen and A. Jacobson for valuable comments on the manuscript. This work was supported by grants of the European Research Council (StG 207419; O.M.), the Swiss National Science Foundation (31003A-127614 and 31003A-143717; O.M.) and the canton of Bern.

Author information

Authors and Affiliations

Authors

Contributions

S.C.R. and O.M. conceived of and designed the experiments. S.C.R. performed the experiments. O.M. and S.C.R wrote the paper. O.M. provided resources.

Corresponding author

Correspondence to Oliver Mühlemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1 and 2, and Supplementary Note (PDF 745 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rufener, S., Mühlemann, O. eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 20, 710–717 (2013). https://doi.org/10.1038/nsmb.2576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing