Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Argonaute proteins couple chromatin silencing to alternative splicing

Abstract

Argonaute proteins play a major part in transcriptional gene silencing in many organisms, but their role in the nucleus of somatic mammalian cells remains elusive. Here, we have immunopurified human Argonaute-1 and Argonaute-2 (AGO1 and AGO2) chromatin-embedded proteins and found them associated with chromatin modifiers and, notably, with splicing factors. Using the CD44 gene as a model, we show that AGO1 and AGO2 facilitate spliceosome recruitment and modulate RNA polymerase II elongation rate, thereby affecting alternative splicing. Proper AGO1 and AGO2 recruitment to CD44 transcribed regions required the endonuclease Dicer and the chromobox protein HP1γ, and resulted in increased histone H3 lysine 9 methylation on variant exons. Our data thus uncover a new model for the regulation of alternative splicing, in which Argonaute proteins couple RNA polymerase II elongation to chromatin modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of AGO.ca complexes.
Figure 2: The AGO2.ca complex is enriched in sRNAs close to splice junctions.
Figure 3: AGO1 and AGO2 regulate alternative splicing of CD44 transcripts.
Figure 4: AGO1 and AGO2 proteins are recruited to the coding region of the CD44 gene.
Figure 5: AGO1 and AGO2 bind to CD44 pre-mRNA.
Figure 6: Deposition of H3K9me3 and reduction of RNAP II elongation rate require AGO1 and AGO2.
Figure 7: sRNAs bound to the AGO2.ca complex are located on the CD44 gene.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Filipowicz, W., Jaskiewicz, L., Kolb, F.A. & Pillai, R.S. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  PubMed  Google Scholar 

  3. Grishok, A., Sinskey, J.L. & Sharp, P.A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 19, 683–696 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martienssen, R.A., Zaratiegui, M. & Goto, D.B. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 21, 450–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fagegaltier, D. et al. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc. Natl. Acad. Sci. USA 106, 21258–21263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zaratiegui, M. et al. RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 479, 135–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reuter, M. et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Weinmann, L. et al. Importin 8 is a gene-silencing factor that targets Argonaute proteins to distinct mRNAs. Cell 136, 496–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Benhamed, M., Herbig, U., Ye, T., Dejean, A. & Bischof, O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat. Cell Biol. 14, 266–275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA–induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Allemand, E., Batsche, E. & Muchardt, C. Splicing, transcription, and chromatin: a ménage à trois. Curr. Opin. Genet. Dev. 18, 145–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brodsky, A.S. et al. Genomic mapping of RNA polymerase II reveals sites of cotranscriptional regulation in human cells. Genome Biol. 6, R64 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  20. de la Mata, M., Lafaille, C. & Kornblihtt, A.R. First come, first served revisited: factors affecting the same alternative-splicing event have different effects on the relative rates of intron removal. RNA 16, 904–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sims, R.J. III et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luco, R.F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Batsché, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  PubMed  Google Scholar 

  24. Saint-André, V., Batsche, E., Rachez, C. & Muchardt, C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 18, 337–344 (2011).

    Article  PubMed  Google Scholar 

  25. Alló, M. et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16, 717–724 (2009).

    Article  PubMed  Google Scholar 

  26. Chu, C.Y. & Rana, T.M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meister, G. et al. Identification of novel Argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Landthaler, M. et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052–1060 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Cammas, F., Herzog, M., Lerouge, T., Chambon, P. & Losson, R. Association of the transcriptional co-repressor TIF1-β with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev. 18, 2147–2160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Will, C.L. & Luhrmann, R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Long, J.C. & Caceres, J.F. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Taft, R.J. et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat. Struct. Mol. Biol. 17, 1030–1034 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Valen, E. et al. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat. Struct. Mol. Biol. 18, 1075–1082 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. O'Carroll, D. et al. A Slicer-independent role for Argonaute-2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 1999–2004 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sinkkonen, L., Hugenschmidt, T., Filipowicz, W. & Svoboda, P. Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS ONE 5, e12175 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Otsuka, M. et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Volpe, T. & Martienssen, R.A. RNA interference and heterochromatin assembly. Cold Spring Harb. Perspect. Biol. 3, a003731 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schalch, T. et al. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol. Cell 34, 36–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moshkovich, N. et al. RNAi-independent role for Argonaute-2 in CTCF/CP190 chromatin insulator function. Genes Dev. 25, 1686–1701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leung, A.K.L. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, E., Dimova, N. & Cambi, F. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res. 35, 4164–4178 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Enerly, E., Sheng, Z. & Li, K.B. Natural antisense as potential regulator of alternative initiation, splicing and termination. In Silico Biol. 5, 367–377 (2005).

    CAS  PubMed  Google Scholar 

  45. RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) and the FANTOM Consortium et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

  46. Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cernilogar, F.M. et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480, 391–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nonne, N., Ameyar-Zazoua, M., Souidi, M. & Harel-Bellan, A. Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res. 38, e20 (2010).

    Article  PubMed  Google Scholar 

  49. Ouararhni, K. et al. The histone variant mH2A1.1 interferes with transcription by downregulating PARP-1 enzymatic activity. Genes Dev. 20, 3324–3336 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fritsch, L. et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell 37, 46–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Berninger, P., Gaidatzis, D., van Nimwegen, E. & Zavolan, M. Computational analysis of small-RNA cloning data. Methods 44, 13–21 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Krainer (Cold Spring Harbor Laboratory) for the antibody to SRSF1 (anti-SRSF1) G. Meister (Regensburg University) for anti-AGO1 no. 4B8 and anti-AGO2 no. 11A9, Z. Mourelatos (University of Pennsylvania) for anti-AGO2 no. 2A8, A. Tarakhovsky (Rockefeller University), G. Hannon (Cold Spring Harbor Laboratory) and M. Otsuka (University of Tokyo) for the kind gift of knockout MEFs, A. Polesskaya (Centre National de la Recherche Scientifique) for generating the tagged AGO2 C2C12 cells, M. Zavolan and M. Khorshid (Basel University) for their help with bioinformatics, the Taplin Biological Mass Spectrometry Facility at Harvard Medical School for MS analysis, P. de la Grange (GenoSplice) for help with bioinformatics and J.B. Weitzman (University Paris Diderot), E. Allemand (Institut Pasteur) and L. Pritchard (Centre National de la Recherche Scientifique) for critical reading of the manuscript. This work was supported by the European Commission Sixth Framework Programme (Integrated Project Silencing RNAs: Organisers and Coordinators of Complexity in Eukaryotic Organisms (SIROCCO) contract number LSHG-CT-2006-037900, to A.H.-B.) and by the Agence Nationale de la Recherche (contract number ANR-11-BSV8-0013 to C.M., J.-C.A. and A.H.-B.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.-Z. and M.S. conducted the biochemical characterization of AGO complexes; P.R. participated in mass-spectrometry analysis; M.A.-Z. and E.B. conducted functional splicing analyses and ChIP experiments; M.A.-Z. E.B. and C.R. conducted RNA-nChIP experiments; R.Y., E.B., N.M., R.F., N.D. and J.-C.A. analyzed RNA deep-sequencing data; E.B. analyzed exon arrays; J.M. conducted some of the RT-qPCRs; L.F. and S.A.-S.-A. contributed the analysis of AGO-H3K9 KMT interaction; A.H. proposed the tandem affinity purification–tagging procedure on chromatin and participated in the design of that part of the study; E.B. and C.M. initiated and supervised splicing analyses; A.H.-B. initiated and supervised AGO complex characterization; C.R. and S.A.-S.-A. participated in writing the paper; M.A.-Z., E.B., C.M. and A.H.-B. wrote the paper.

Corresponding authors

Correspondence to Eric Batsché or Annick Harel-Bellan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–6 (PDF 10743 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameyar-Zazoua, M., Rachez, C., Souidi, M. et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol 19, 998–1004 (2012). https://doi.org/10.1038/nsmb.2373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing