Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A locally closed conformation of a bacterial pentameric proton-gated ion channel

Abstract

Pentameric ligand-gated ion channels mediate signal transduction through conformational transitions between closed-pore and open-pore states. To stabilize a closed conformation of GLIC, a bacterial proton-gated homolog from Gloeobacter violaceus whose open structure is known, we separately generated either four cross-links or two single mutations. We found all six mutants to be in the same 'locally closed' conformation using X-ray crystallography, sharing most of the features of the open form but showing a locally closed pore as a result of a concerted bending of all of its M2 helices. The mutants adopt several variant conformations of the M2-M3 loop, and in all cases an interacting lipid that is observed in the open form disappears. A single cross-linked mutant is functional, according to electrophysiology, and the locally closed structure of this mutant indicates that it has an increased flexibility. Further cross-linking, accessibility and molecular dynamics data suggest that the locally closed form is a functionally relevant conformation that occurs during allosteric gating transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray structure of the loop2-24′ mutant in the LC1 conformation.
Figure 2: The M2-M3 loop conformation in the different locally closed forms.
Figure 3: Electrophysiology of the cysteine mutants.
Figure 4: In silico characterization of the locally closed state determined by molecular dynamics and normal modes.
Figure 5: Probing the M2-M3 motion by cysteine accessibility and cross-linking.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Changeux, J.-P. & Edelstein, S.J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005).

    Article  CAS  Google Scholar 

  2. Burzomato, V., Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. Single channel behaviour of heteromeric α1β glycine receptors: an attempt to detect conformational change before the channel opens. J. Neurosci. 24, 10924–10940 (2004).

    Article  CAS  Google Scholar 

  3. Mukhtasimova, N., Lee, W.Y., Wang, H.L. & Sine, S.M. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature 459, 451–454 (2009).

    Article  CAS  Google Scholar 

  4. Hilf, R.J.C. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  Google Scholar 

  5. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    Article  CAS  Google Scholar 

  6. Hilf, R.J.C. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  Google Scholar 

  7. Hibbs, R.E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).

    Article  CAS  Google Scholar 

  8. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  Google Scholar 

  9. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  Google Scholar 

  10. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.Y. & Changeux, J.P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc. Natl. Acad. Sci. USA 83, 2719–2723 (1986).

    Article  CAS  Google Scholar 

  11. Cymes, G.D., Ying, N. & Grosman, C. Probing ion-channel pores one proton at a time. Nature 438, 975–980 (2005).

    Article  CAS  Google Scholar 

  12. Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007).

    Article  CAS  Google Scholar 

  13. Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431 (2011).

    Article  CAS  Google Scholar 

  14. Baenziger, J.E. & Corringer, P.-J. 3Dstructure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 60, 116–125 (2011).

    Article  CAS  Google Scholar 

  15. Brannigan, G., Hénin, J., Law, R., Eckenhoff, R. & Klein, M.L. Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 105, 14418–14423 (2008).

    Article  CAS  Google Scholar 

  16. Wang, H.-L., Chang, X. & Sine, S.M. Intra-membrane proton binding site linked to activation of a bacterial pentameric ion channel. J. Biol. Chem. 287, 6482–6489 (2012).

    Article  CAS  Google Scholar 

  17. Nury, H. et al. One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proc. Natl. Acad. Sci. USA 107, 6275–6280 (2010).

    Article  CAS  Google Scholar 

  18. Franklin, J., Koehl, P., Doniach, S. & Delarue, M. MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Nucleic Acids Res. 35, W477–W482 (2007).

    Article  Google Scholar 

  19. Parikh, R.B., Bali, M. & Akabas, M.H. Structure of M2 transmembrane segment of GLIC, a prokaryotic Cys-loop receptor homologue from Gloeobacter violaceus, probed by substituted cysteine accessibility. J. Biol. Chem. 286, 14098–14109 (2011).

    Article  CAS  Google Scholar 

  20. Revah, F. et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846–849 (1991).

    Article  CAS  Google Scholar 

  21. Chang, Y. & Weiss, D.S. Substitutions of the highly conserved M2 leucine create spontaneously opening ρ1 γ-aminobutyric acid receptors. Mol. Pharmacol. 53, 511–523 (1998).

    Article  CAS  Google Scholar 

  22. Lobo, I.A., Trudell, J.R. & Harris, R.A. Cross-linking of glycine receptor transmembrane segments two and three alters coupling of ligand binding with channel opening. J. Neurochem. 90, 962–969 (2004).

    Article  CAS  Google Scholar 

  23. Williams, D.B. & Akabas, M.H. γ-aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in γ-aminobutyric acid type A receptors. Biophys. J. 77, 2563–2574 (1999).

    Article  CAS  Google Scholar 

  24. Duret, G. et al. Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family. Proc. Natl. Acad. Sci. USA 108, 12143–12148 (2011).

    Article  CAS  Google Scholar 

  25. Yamodo, I.H., Chiara, D.C., Cohen, J.B. & Miller, K.W. Conformational changes in the nicotinic acetylcholine receptor during gating and desensitization. Biochemistry 49, 156–165 (2010).

    Article  CAS  Google Scholar 

  26. Colquhoun, D. & Sakmann, B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (Lond.) 369, 501–557 (1985).

    Article  CAS  Google Scholar 

  27. Purohit, P., Mitra, A. & Auerbach, A. A stepwise mechanism for acetylcholine receptor channel gating. Nature 446, 930–933 (2007).

    Article  CAS  Google Scholar 

  28. Li, G.-D. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci. 26, 11599–11605 (2006).

    Article  CAS  Google Scholar 

  29. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  Google Scholar 

  30. Young, G.T., Walker, A.S., Sher, E. & Millar, N.S. Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl. Acad. Sci. USA 105, 14686–14691 (2008).

    Article  CAS  Google Scholar 

  31. Taly, A., Corringer, P.J., Guedin, D., Lestage, P. & Changeux, J.P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 8, 733–750 (2009).

    Article  CAS  Google Scholar 

  32. Kabsch, W. Automatic processing of rotation diffraction data from crystals of 21 initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  33. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  34. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  35. Blanc, E., Roversi, P., Vonrhein, C., Flensburg, S.M. & Bricogne, G. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

  36. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  37. Brooks, B.R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  Google Scholar 

  38. Krieger, E., Nielsen, J.E., Spronk, C.A. & Vriend, G. Fast empirical pKa prediction by Ewald summation. J. Mol. Graph. Model. 25, 481–486 (2006).

    Article  CAS  Google Scholar 

  39. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  40. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald - an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  41. Tuckerman, M., Berne, B.J. & Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).

    Article  CAS  Google Scholar 

  42. Tama, F. & Sanejouand, Y.-H. Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001).

    Article  CAS  Google Scholar 

  43. PyMOL. (The PyMOL Molecular Graphics System, Version 1.2r3pre) (Schrödinger, LLC, version 0.99, 2006).

  44. Smart, O.S., Goodfellow, J.M. & Wallace, B.A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission grant 'NeuroCypres' to M.D. and P.-J.C., and the Louis D. Foundation from the Institut de France (to P.-J.C.). Molecular simulations were performed using high performance computing resources from Grand Equipement National de Calcul Intensif (GENCI)–Institut du Développement et des Ressources en Informatique Scientifique (IDRIS) (grant 2010-072292 to M.D.). The authors thank the staff at Soleil (PXl) and European Synchotron Radiation Facility (ESRF) (especially at beamlines ID29, ID14-4) for their help and their useful advice during X-ray Data Collection. We thank T. Allen for helping us optimize the setup of the simulation system. We thank J.-P. Changeux, S. Edelstein, A. Taly and D. Digregorio for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.S.P. carried out mutagenesis, electrophysiology, immunofluorescence and biochemistry with the help of C.V.R. and C.H. L.S. and H.N. carried out protein production, crystal growth, data collection and model refinement. L.S. and H.N. performed structure analysis with the help of F.P. and M.S.P. F.P. carried out the normal mode analysis. M.B. carried out molecular dynamic simulations, which were analyzed by M.B. and F.P. M.D. and P.-J.C. supervised the work. M.S.P. and P.-J.C. wrote the manuscript with the help of the other authors.

Corresponding authors

Correspondence to Marc Delarue or Pierre-Jean Corringer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 2387 kb)

Supplementary Video 1

MinActionPath plausible trajectory between the Open and LC conformation at the Cα level of description, according to Supplementary Fig. 5. The movie shows the TMD alone in upper view. (MPG 2829 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prevost, M., Sauguet, L., Nury, H. et al. A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nat Struct Mol Biol 19, 642–649 (2012). https://doi.org/10.1038/nsmb.2307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing