Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An alternative mode of microRNA target recognition

Abstract

MicroRNAs (miRNAs) regulate mRNA targets through perfect pairing with their seed region (positions 2–7). Recently, a precise genome-wide map of miRNA interaction sites in mouse brain was generated by high-throughput sequencing and analysis of clusters of ~50-nucleotide mRNA tags cross-linked to Argonaute (Ago HITS-CLIP). By analyzing Ago HITS-CLIP 'orphan clusters'—Ago binding regions from HITS-CLIP that cannot be explained by canonical seed matches—we have now identified an alternative binding mode used by miRNAs. Specifically, G-bulge sites (positions 5–6) are often bound and regulated by miR-124 in brain. More generally, bulged sites comprise ≥15% of all Ago-miRNA interactions in mouse brain and are evolutionarily conserved. We call position 6 the 'pivot' nucleotide and suggest a model in which a transitional 'nucleation bulge' leads to functional bulge mRNA-miRNA interactions, expanding the number of potential miRNA regulatory sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of G-bulge sites pairing to miR-124 by Ago HITS-CLIP analysis.
Figure 2: Validation of G-bulge sites in Ago–miR-124 clusters.
Figure 3: Nucleation bulges are widely used and evolutionarily conserved as functional miRNA target sites.
Figure 4: Functional nucleation bulges in let-7 and miR-708, and gene ontology (GO) analysis.
Figure 5: Pivot pairing and transitional nucleation models.

Similar content being viewed by others

References

  1. Sharp, P.A. The centrality of RNA. Cell 136, 577–580 (2009).

    Article  CAS  Google Scholar 

  2. Licatalosi, D.D. & Darnell, R.B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010).

    Article  CAS  Google Scholar 

  3. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  4. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  5. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  6. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  7. Long, D. et al. Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol. 14, 287–294 (2007).

    Article  CAS  Google Scholar 

  8. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  Google Scholar 

  9. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  Google Scholar 

  10. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  Google Scholar 

  11. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  Google Scholar 

  12. Mourelatos, Z. Small RNAs: the seeds of silence. Nature 455, 44–45 (2008).

    Article  CAS  Google Scholar 

  13. Easow, G., Teleman, A.A. & Cohen, S.M. Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204 (2007).

    Article  CAS  Google Scholar 

  14. Ha, I., Wightman, B. & Ruvkun, G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev. 10, 3041–3050 (1996).

    Article  CAS  Google Scholar 

  15. Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K. & Slack, F.J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137 (2004).

    Article  CAS  Google Scholar 

  16. Tay, Y., Zhang, J., Thomson, A.M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    Article  CAS  Google Scholar 

  17. Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol. 13, 849–851 (2006).

    Article  CAS  Google Scholar 

  18. Hammell, M. et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat. Methods 5, 813–819 (2008).

    Article  CAS  Google Scholar 

  19. Karginov, F.V. et al. A biochemical approach to identifying microRNA targets. Proc. Natl. Acad. Sci. USA 104, 19291–19296 (2007).

    Article  CAS  Google Scholar 

  20. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  Google Scholar 

  21. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  Google Scholar 

  22. Darnell, R.B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    Article  CAS  Google Scholar 

  23. Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  Google Scholar 

  24. Zisoulis, D.G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans . Nat. Struct. Mol. Biol. 17, 173–179 (2010).

    Article  CAS  Google Scholar 

  25. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  26. Leung, A.K. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    Article  CAS  Google Scholar 

  27. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  Google Scholar 

  28. Khan, A.A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 27, 549–555 (2009).

    Article  CAS  Google Scholar 

  29. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  30. Linsley, P.S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240–2252 (2007).

    Article  CAS  Google Scholar 

  31. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  Google Scholar 

  32. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129, 303–317 (2007).

    Article  CAS  Google Scholar 

  33. Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010).

    Article  CAS  Google Scholar 

  34. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  Google Scholar 

  35. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  Google Scholar 

  36. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  Google Scholar 

  37. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  Google Scholar 

  38. Tinoco, I. Jr. & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).

    Article  CAS  Google Scholar 

  39. Parker, J.S., Parizotto, E.A., Wang, M., Roe, S.M. & Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell 33, 204–214 (2009).

    Article  CAS  Google Scholar 

  40. Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to 'seedless' 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).

    Article  CAS  Google Scholar 

  41. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    Article  CAS  Google Scholar 

  42. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  Google Scholar 

  43. Nelson, P.T. et al. A novel monoclonal antibody against human Argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells. RNA 13, 1787–1792 (2007).

    Article  CAS  Google Scholar 

  44. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Darnell and Hannon laboratories for helpful discussions. This work was supported in part by grants from the US National Institutes of Health (R.B.D. and G.J.H.) and a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare (A111989, to S.W.C.). R.B.D. and G.J.H. are investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.W.C. carried out the experiments and computational analyses. S.W.C. and R.B.D. analyzed the data. S.W.C., G.J.H. and R.B.D. designed the research and wrote the paper.

Corresponding authors

Correspondence to Sung Wook Chi or Robert B Darnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 2261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, S., Hannon, G. & Darnell, R. An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19, 321–327 (2012). https://doi.org/10.1038/nsmb.2230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing