Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors

Abstract

Oncogene-induced replicative stress activates an Atr- and Chk1-dependent response, which has been proposed to be widespread in tumors. We explored whether the presence of replicative stress could be exploited for the selective elimination of cancer cells. To this end, we evaluated the impact of targeting the replicative stress-response on cancer development. In mice (Mus musculus), the reduced levels of Atr found on a mouse model of the Atr-Seckel syndrome completely prevented the development of Myc-induced lymphomas or pancreatic tumors, both of which showed abundant levels of replicative stress. Moreover, Chk1 inhibitors were highly effective in killing Myc-driven lymphomas. By contrast, pancreatic adenocarcinomas initiated by K-RasG12V showed no detectable evidence of replicative stress and were nonresponsive to this therapy. Besides its impact on cancer, Myc overexpression aggravated the phenotypes of Atr-Seckel mice, revealing that oncogenes can modulate the severity of replicative stress-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced levels of Atr prevent lymphomagenesis on Eμ-myc mice.
Figure 2: Eμ-myc aggravates the symptoms of the Seckel syndrome.
Figure 3: Atr suppresses Myc-induced replicative stress and apoptosis.
Figure 4: Treatment of Myc-induced lymphomas with Chk1 inhibitors.
Figure 5: Effect of Chk1 inhibitors in Myc- or Ras-driven pancreatic tumors.

Similar content being viewed by others

References

  1. de Bono, J.S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halazonetis, T.D., Gorgoulis, V.G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Gorgoulis, V.G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dereli-Öz, A., Versini, G. & Halazonetis, T.D. Studies of genomic copy number changes in human cancers reveal signatures of DNA replication stress. Mol. Oncol. 5, 308–314 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cimprich, K.A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. López-Contreras, A.J. & Fernandez-Capetillo, O. The ATR barrier to replication-born DNA damage. DNA Repair (Amst.) 9, 1249–1255 (2010).

    Article  Google Scholar 

  14. Harris, A.W. et al. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J. Exp. Med. 167, 353–371 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110, 2996–3004 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Shreeram, S. et al. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J. Exp. Med. 203, 2793–2799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campaner, S. et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat. Cell Biol. 12, 54–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Murga, M. et al. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat. Genet. 41, 891–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Gagou, M.E., Zuazua-Villar, P. & Meuth, M. Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol. Biol. Cell 21, 739–752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Syljuåsen, R.G. et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25, 3553–3562 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Toledo, L.I. et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer associated mutations. Nat. Struct. Mol. Biol. 18, 721–727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy, D.J. et al. Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14, 447–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt, C.A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Spruck, C.H., Won, K.A. & Reed, S.I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Gilad, O. et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 70, 9693–9702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Jackson, E.L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sandgren, E.P., Quaife, C.J., Paulovich, A.G., Palmiter, R.D. & Brinster, R.L. Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc. Natl. Acad. Sci. USA 88, 93–97 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Efeyan, A. et al. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS ONE 4, e5475 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Junttila, M.R. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14, 1096–1104 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Cole, K.A. et al. RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc. Natl. Acad. Sci. USA 108, 3336–3341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toledo, L.I., Murga, M. & Fernandez-Capetillo, O. Targeting ATR and Chk1 kinases for cancer treatment: A new model for new (and old) drugs. Mol. Oncol. 5, 368–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W. & Friend, S.H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Herold, S., Herkert, B. & Eilers, M. Facilitating replication under stress: an oncogenic function of MYC? Nat. Rev. Cancer 9, 441–444 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Pickering, M.T., Stadler, B.M. & Kowalik, T.F. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28, 140–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Jacome, A. & Fernandez-Capetillo, O. Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO Rep. 12, 1032–1038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson, K., Asawachaicharn, N., Galloway, D.A. & Grandori, C. c-Myc accelerates S-phase and requires WRN to avoid replication stress. PLoS ONE 4, e5951 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Herold, S. et al. Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J. 27, 2851–2861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Y.C. et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 3, e2722 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A. & Simon, M.C. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Serrano for critical comments on the manuscript and F.X. Real for advice on the Ela-myc model. M.M. is supported a grant from Fondo de Investigaciones Sanitarias (PI080220). T.S. is supported by German Research Foundation (DFG) Research Fellowship (SCHL 1945/1-1). Work in O.F.-C.'s laboratory is supported by grants from the Spanish Ministry of Science (CSD2007-00017 and SAF2008-01596), Miguel Catalan Award from the Community of Madrid, European Molecular Biology Organization (EMBO) Young Investigator Programme and the European Research Council (ERC-210520).

Author information

Authors and Affiliations

Authors

Contributions

O.F.-C. designed the study and experiments and wrote the paper. M.M. conducted most of the experiments presented. A.J.L.-C. conducted the work with the xenografts and the R26-MERT2 system. L.I.T. helped with the MycER experiments. L.D., T.S., S.C. and B.A. conducted lymphoma chemotherapy and contributed to the discussion of the manuscript. M.F.M. and R.S. analyzed Seckel MEFs, embryos and tumors. C.G. and M.B. worked on K-RasG12V-induced pancreatic tumors. E.G. and M.H. helped to design and worked with xenograft models.

Corresponding authors

Correspondence to Matilde Murga or Oscar Fernandez-Capetillo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 1507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murga, M., Campaner, S., Lopez-Contreras, A. et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18, 1331–1335 (2011). https://doi.org/10.1038/nsmb.2189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2189

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer