Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT

A Corrigendum to this article was published on 05 March 2012

This article has been updated

Abstract

miRNAs recruit the miRNA-induced silencing complex (miRISC), which includes Argonaute and GW182 as core proteins. GW182 proteins effect translational repression and deadenylation of target mRNAs. However, the molecular mechanisms of GW182-mediated repression remain obscure. We show here that human GW182 independently interacts with the PAN2–PAN3 and CCR4–NOT deadenylase complexes. Interaction of GW182 with CCR4–NOT is mediated by two newly discovered phylogenetically conserved motifs. Although either motif is sufficient to bind CCR4–NOT, only one of them can promote processive deadenylation of target mRNAs. Thus, GW182 serves as both a platform that recruits deadenylases and as a deadenylase coactivator that facilitates the removal of the poly(A) tail by CCR4–NOT.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian GW182 protein silencing domain (SD) interacts with PABP and the CCR4–NOT deadenylase complex through independent domains to promote deadenylation.
Figure 2: CCR4–NOT deadenylation complex interacts with an LWG repeat in GW182 C-terminal domain.
Figure 3: CNOT1 subunit links GW182 to the CCR4–NOT complex.
Figure 4: The GW182 middle domain contains a second CCR4–NOT binding site.
Figure 5: Model for GW182 coordinating miRNA-mediated deadenylation.

Similar content being viewed by others

Change history

  • 08 November 2011

    In the version of this article initially published, several acknowledgments were missing. The end of the section should read as follows: "...N.S., who was also supported by a Howard Hughes Medical Institute (HHMI) International Scholarship. Postdoctoral support was from the Terry Fox Foundation of the Canadian Cancer Society to M.R.F. T.F.D. was supported through a CIHR grant. M.K.C. was supported by the Foundation for Polish Science International PhD Projects. F.F. was supported by a Boehringer Ingelheim Fonds PhD fellowship." The error has been corrected in the HTML and PDF versions of the article.

References

  1. Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  2. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).

    Article  CAS  Google Scholar 

  3. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  Google Scholar 

  4. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    Article  CAS  Google Scholar 

  5. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  Google Scholar 

  6. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353 (2008).

    Article  CAS  Google Scholar 

  7. Jakymiw, A. et al. The role of GW/P-bodies in RNA processing and silencing. J. Cell Sci. 120, 1317–1323 (2007).

    Article  CAS  Google Scholar 

  8. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266 (2005).

    Article  Google Scholar 

  9. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  Google Scholar 

  10. Zipprich, J.T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15, 781–793 (2009).

    Article  CAS  Google Scholar 

  11. Chekulaeva, M., Parker, R. & Filipowicz, W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res. 38, 6673–6683 (2010).

    Article  CAS  Google Scholar 

  12. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).

    Article  CAS  Google Scholar 

  13. Lazzaretti, D., Tournier, I. & Izaurralde, E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 15, 1059–1066 (2009).

    Article  CAS  Google Scholar 

  14. Baillat, D. & Shiekhattar, R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol. Cell Biol. 29, 4144–4155 (2009).

    Article  CAS  Google Scholar 

  15. Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N. & Doudna, J.A. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. 17, 238–240 (2010).

    Article  CAS  Google Scholar 

  16. Eulalio, A., Tritschler, F. & Izaurralde, E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15, 1433–1442 (2009).

    Article  CAS  Google Scholar 

  17. Takimoto, K., Wakiyama, M. & Yokoyama, S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 15, 1078–1089 (2009).

    Article  CAS  Google Scholar 

  18. Lian, S.L. et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15, 804–813 (2009).

    Article  CAS  Google Scholar 

  19. Eulalio, A. et al. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res. 37, 2974–2983 (2009).

    Article  CAS  Google Scholar 

  20. Huntzinger, E., Braun, J.E., Heimstadt, S., Zekri, L. & Izaurralde, E. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J. 29, 4146–4160 (2010).

    Article  CAS  Google Scholar 

  21. Zekri, L., Huntzinger, E., Heimstadt, S. & Izaurralde, E. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell Biol. 29, 6220–6231 (2009).

    Article  CAS  Google Scholar 

  22. Kozlov, G., Safaee, N., Rosenauer, A. & Gehring, K. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J. Biol. Chem. 285, 13599–13606 (2010).

    Article  CAS  Google Scholar 

  23. Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    Article  CAS  Google Scholar 

  24. Goldstrohm, A.C. & Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell Biol. 9, 337–344 (2008).

    Article  CAS  Google Scholar 

  25. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).

    Article  CAS  Google Scholar 

  26. Wu, E. et al. Pervasive and cooperative deadenylation of 3′UTRs by embryonic microRNA families. Mol. Cell 40, 558–570 (2010).

    Article  CAS  Google Scholar 

  27. Siddiqui, N. et al. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J. Biol. Chem. 282, 25067–25075 (2007).

    Article  CAS  Google Scholar 

  28. Uchida, N., Hoshino, S. & Katada, T. Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 279, 1383–1391 (2004).

    Article  CAS  Google Scholar 

  29. Brown, C.E., Tarun, S.Z. Jr., Boeck, R. & Sachs, A.B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 5744–5753 (1996).

    Article  CAS  Google Scholar 

  30. Lau, N.C. et al. Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem. J. 422, 443–453 (2009).

    Article  CAS  Google Scholar 

  31. Piao, X., Zhang, X., Wu, L. & Belasco, J.G. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell Biol. 30, 1486–1494 (2010).

    Article  CAS  Google Scholar 

  32. Chen, C.Y., Zheng, D., Xia, Z. & Shyu, A.B. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. 16, 1160–1166 (2009).

    Article  CAS  Google Scholar 

  33. Zheng, D. et al. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J. Cell Biol. 182, 89–101 (2008).

    Article  CAS  Google Scholar 

  34. Simón, E. & Seraphin, B. A specific role for the C-terminal region of the Poly(A)-binding protein in mRNA decay. Nucleic Acids Res. 35, 6017–6028 (2007).

    Article  Google Scholar 

  35. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).

    Article  CAS  Google Scholar 

  36. Baer, B.W. & Kornberg, R.D. Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. Nat. Struct. Mol. Biol 77, 1890–1892 (1980).

  37. Chekulaeva, M. et al. miRNA repression involves GW182‐mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. doi:10.1038/nsmb.2166 (published online 7 Oct 2011).

  38. Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 43, doi:10.1016/j.molcel.2011.09.007 (2011).

  39. Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N. & Doudna, J.A. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. 17, 238–240 (2010).

    Article  CAS  Google Scholar 

  40. Ito, K. et al. CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death. Genes Cells 16, 368–379 (2011).

    Article  CAS  Google Scholar 

  41. Miyasaka, T. et al. Interaction of antiproliferative protein Tob with the CCR4-NOT deadenylase complex. Cancer Sci. 99, 755–761 (2008).

    Article  CAS  Google Scholar 

  42. Morita, M. et al. Depletion of mammalian CCR4b deadenylase triggers elevation of the p27Kip1 mRNA level and impairs cell growth. Mol. Cell Biol. 27, 4980–4990 (2007).

    Article  CAS  Google Scholar 

  43. Craig, R., Cortens, J.P. & Beavis, R.C. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3, 1234–1242 (2004).

    Article  CAS  Google Scholar 

  44. Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Hannon (Cold Spring Harbor Laboratory) for providing rabbit polyclonal CNOT10 antibody; A.-B. Shyu (University of Texas Medical School) for rabbit polyclonal PAN2 antibody; W. Filipowicz (Friedrich Miescher Institute for Biomedical Research) for TNRC6C and LacZ plasmids; and M. Jinek, T. Sundermeier and I. Topisirovic for helpful discussions. This work was supported by a Canadian Institutes of Health Research (CIHR) grant to N.S., who was also supported by a Howard Hughes Medical Institute (HHMI) International Scholarship. Postdoctoral support was from the Terry Fox Foundation of the Canadian Cancer Society to M.R.F. T.F.D. was supported through a CIHR grant. M.K.C. was supported by the Foundation for Polish Science International PhD Projects. F.F. was supported by a Boehringer Ingelheim Fonds PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.R.F., T.F.D. and N.S. designed experiments. M.R.F., M.K.C., J.G. and M.M. conducted experiments. T.S. and B.R. conducted mass spectrometry analysis. F.F. and B.N. purified recombinant CNOT1 protein. T.Y. provided CNOT antibodies. M.R.F., T.F.D. and N.S. wrote the manuscript.

Corresponding author

Correspondence to Nahum Sonenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1. (PDF 2866 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabian, M., Cieplak, M., Frank, F. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat Struct Mol Biol 18, 1211–1217 (2011). https://doi.org/10.1038/nsmb.2149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing