Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel

Abstract

The flow of ions through cation-selective members of the pentameric ligand-gated ion channel family is inhibited by a structurally diverse class of molecules that bind to the transmembrane pore in the open state of the protein. To obtain insight into the mechanism of channel block, we have investigated the binding of positively charged inhibitors to the open channel of the bacterial homolog GLIC by using X-ray crystallography and electrophysiology. Our studies reveal the location of two regions for interactions, with larger blockers binding in the center of the membrane and divalent transition metal ions binding to the narrow intracellular pore entry. The results provide a structural foundation for understanding the interactions of the channel with inhibitors that is relevant for the entire family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GLIC structure.
Figure 2: Inhibition of GLIC by quaternary ammonium compounds.
Figure 3: Inhibition of GLIC by lidocaine.
Figure 4: Inhibition of GLIC by Cd2+.
Figure 5: Mechanisms of open channel block.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels of Excitable Membranes 3rd edn. (Sinauer Associates Inc., Sunderland, Massachusetts, USA, 2001).

  2. Sine, S.M. & Engel, A.G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448–455 (2006).

    Article  CAS  Google Scholar 

  3. Corringer, P.J., Le Novere, N. & Changeux, J.P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458 (2000).

    Article  CAS  Google Scholar 

  4. Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114 (2002).

    Article  CAS  Google Scholar 

  5. Adler, M., Oliveira, A.C., Albuquerque, E.X., Mansour, N.A. & Eldefrawi, A.T. Reaction of tetraethylammonium with the open and closed conformations of the acetylcholine receptor ionic channel complex. J. Gen. Physiol. 74, 129–152 (1979).

    Article  CAS  Google Scholar 

  6. Leonard, R.J., Labarca, C.G., Charnet, P., Davidson, N. & Lester, H.A. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242, 1578–1581 (1988).

    Article  CAS  Google Scholar 

  7. Revah, F. et al. The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc. Natl. Acad. Sci. USA 87, 4675–4679 (1990).

    Article  CAS  Google Scholar 

  8. Charnet, P. et al. An open-channel blocker interacts with adjacent turns of alpha-helices in the nicotinic acetylcholine receptor. Neuron 4, 87–95 (1990).

    Article  CAS  Google Scholar 

  9. Pascual, J.M. & Karlin, A. Delimiting the binding site for quaternary ammonium lidocaine derivatives in the acetylcholine receptor channel. J. Gen. Physiol. 112, 611–621 (1998).

    Article  CAS  Google Scholar 

  10. Neher, E. & Steinbach, J.H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. (Lond.) 277, 153–176 (1978).

    Article  CAS  Google Scholar 

  11. Nutter, T.J. & Adams, D.J. Monovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia. J. Gen. Physiol. 105, 701–723 (1995).

    Article  CAS  Google Scholar 

  12. Adams, D.J., Dwyer, T.M. & Hille, B. The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75, 493–510 (1980).

    Article  CAS  Google Scholar 

  13. Dani, J.A. & Eisenman, G. Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure. J. Gen. Physiol. 89, 959–983 (1987).

    Article  CAS  Google Scholar 

  14. Hilf, R.J. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  Google Scholar 

  15. Hilf, R.J. & Dutzler, R. A prokaryotic perspective on pentameric ligand-gated ion channel structure. Curr. Opin. Struct. Biol. 19, 418–424 (2009).

    Article  CAS  Google Scholar 

  16. Hilf, R.J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  Google Scholar 

  17. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    Article  CAS  Google Scholar 

  18. Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007).

    Article  CAS  Google Scholar 

  19. Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).

    Article  CAS  Google Scholar 

  20. Konno, T. et al. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc. Biol. Sci. 244, 69–79 (1991).

    Article  CAS  Google Scholar 

  21. Woodhull, A.M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  22. Gumilar, F., Arias, H.R., Spitzmaul, G. & Bouzat, C. Molecular mechanisms of inhibition of nicotinic acetylcholine receptors by tricyclic antidepressants. Neuropharmacology 45, 964–976 (2003).

    Article  CAS  Google Scholar 

  23. Sepúlveda, M.I., Baker, J. & Lummis, S.C. Chlorpromazine and QX222 block 5–HT3 receptors in N1E–115 neuroblastoma cells. Neuropharmacology 33, 493–499 (1994).

    Article  Google Scholar 

  24. Yu, Y., Shi, L. & Karlin, A. Structural effects of quinacrine binding in the open channel of the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 100, 3907–3912 (2003).

    Article  CAS  Google Scholar 

  25. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  26. Hille, B. Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature 210, 1220–1222 (1966).

    Article  CAS  Google Scholar 

  27. Weisstaub, N., Vetter, D.E., Elgoyhen, A.B. & Katz, E. The alpha9alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations. Hear. Res. 167, 122–135 (2002).

    Article  CAS  Google Scholar 

  28. Bertrand, D., Galzi, J.L., Devillers-Thiéry, A., Bertrand, S. & Changeux, J.P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc. Natl. Acad. Sci. USA 90, 6971–6975 (1993).

    Article  CAS  Google Scholar 

  29. Imoto, K. et al. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324, 670–674 (1986).

    Article  CAS  Google Scholar 

  30. Wilson, G.G., Pascual, J.M., Brooijmans, N., Murray, D. & Karlin, A. The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel. J. Gen. Physiol. 115, 93–106 (2000).

    Article  CAS  Google Scholar 

  31. Lenaeus, M.J., Vamvouka, M., Focia, P.J. & Gross, A. Structural basis of TEA blockade in a model potassium channel. Nat. Struct. Mol. Biol. 12, 454–459 (2005).

    Article  CAS  Google Scholar 

  32. Heravi, M.M., Abdolhosseini, N. & Oskooie, H.A. Regioselective and high-yielding bromination of aromatic compounds using hexamethylenetetramine–bromine. Tetrahedr. Lett. 46, 8959–8963 (2005).

    Article  CAS  Google Scholar 

  33. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project Number 4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  35. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  36. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  37. Kleywegt, G. & Jones, T.A. In Proceedings of the CCP4 Study Weekend. (eds. Bailey, S., Hubbard, R. & Waller, D.), 59–66 (Daresbury Laboratory, Daresbury, UK, 1994).

    Google Scholar 

  38. Sanner, M.F., Olson, A.J. & Spehner, J.C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).

    Article  CAS  Google Scholar 

  39. Lorenz, C., Pusch, M. & Jentsch, T.J. Heteromultimeric CLC chloride channels with novel properties. Proc. Natl. Acad. Sci. USA 93, 13362–13366 (1996).

    Article  CAS  Google Scholar 

  40. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  41. Im, W., Beglov, D. & Roux, B. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Bolztmann equation. Comput. Phys. Commun. 111, 59–75 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the X06SA beamline for support during data collection and members of the Dutzler lab for help in all stages of the project. Data collection was done at the Swiss Light Source of the Paul Scherrer Institute. The research leading to these results received funding from a grant from the Swiss National Science Foundation (SNF) and from an EC FP7 grant for the European Drug Initiative on Channels and Transporters consortium (HEALTH-201924). R.J.C.H. received the support of the Forschungskredit of the University of Zurich. C.B. and I.Z. are affiliated with the Biomolecular Structure and Mechanism PhD program of the University of Zurich (UZH) and the Swiss Federal Institute of Technology (ETH) Zurich.

Author information

Authors and Affiliations

Authors

Contributions

R.J.C.H. and C.B. carried out all experiments. I.Z. assisted in electrophysiological and crystallographic data collection. A.R. and D.T. synthesized the channel blockers. R.D., R.J.C.H. and C.B. jointly planned the experiments and analyzed the data. R.D. wrote the manuscript with the help of all coauthors.

Corresponding author

Correspondence to Raimund Dutzler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 702 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilf, R., Bertozzi, C., Zimmermann, I. et al. Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat Struct Mol Biol 17, 1330–1336 (2010). https://doi.org/10.1038/nsmb.1933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing