Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase

Abstract

Nuclear volume and the number of nuclear pore complexes (NPCs) on the nucleus almost double during interphase in dividing cells. How these events are coordinated with the cell cycle is poorly understood, particularly in mammalian cells. We report here, based on newly developed techniques for visualizing NPC formation, that cyclin-dependent kinases (Cdks), especially Cdk1 and Cdk2, promote interphase NPC formation in human dividing cells. Cdks seem to drive an early step of NPC formation because Cdk inhibition suppressed generation of 'nascent pores', which we argue are immature NPCs under the formation process. Consistent with this, Cdk inhibition disturbed proper expression and localization of some nucleoporins, including Elys/Mel-28, which triggers postmitotic NPC assembly. Strikingly, Cdk suppression did not notably affect nuclear growth, suggesting that interphase NPC formation and nuclear growth have distinct regulation mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NPC density and nuclear volume increase during the cell cycle.
Figure 2: Heterokaryon technique for visualization of NPC formation.
Figure 3: Cdk-dependent NPC formation during interphase.
Figure 4: Cdk-dependent NPC distribution and direct observation of NPC structures.
Figure 5: Cdks control expression and localization of several nucleoporins.
Figure 6: Cdk activity is not required for postmitotic NPC assembly.

Similar content being viewed by others

References

  1. Morgan, D.O. The Cell Cycle—Principles of Control. (New Science Press Ltd, London, 2007).

    Google Scholar 

  2. Hetzer, M.W., Walther, T.C. & Mattaj, I.W. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell Dev. Biol. 21, 347–380 (2005).

    Article  CAS  Google Scholar 

  3. Tran, E.J. & Wente, S.R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006).

    Article  CAS  Google Scholar 

  4. Antonin, W., Ellenberg, J. & Dultz, E. Nuclear pore complex assembly through the cell cycle: regulation and membrane organization. FEBS Lett. 582, 2004–2016 (2008).

    Article  CAS  Google Scholar 

  5. D'Angelo, M.A. & Hetzer, M.W. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18, 456–466 (2008).

    Article  CAS  Google Scholar 

  6. Lim, R.Y., Ullman, K.S. & Fahrenkrog, B. Biology and biophysics of the nuclear pore complex and its components. Int. Rev. Cell. Mol. Biol. 267, 299–342 (2008).

    Article  CAS  Google Scholar 

  7. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  Google Scholar 

  8. Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  Google Scholar 

  9. Rabut, G., Lenart, P. & Ellenberg, J. Dynamics of nuclear pore complex organization through the cell cycle. Curr. Opin. Cell Biol. 16, 314–321 (2004).

    Article  CAS  Google Scholar 

  10. D'Angelo, M.A., Raices, M., Panowski, S.H. & Hetzer, M.W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

    Article  CAS  Google Scholar 

  11. Maul, G.G. et al. Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J. Cell Biol. 55, 433–447 (1972).

    Article  CAS  Google Scholar 

  12. Maul, G.G. Nuclear pore complexes. Elimination and reconstruction during mitosis. J. Cell Biol. 74, 492–500 (1977).

    Article  CAS  Google Scholar 

  13. Onischenko, E.A., Gubanova, N.V., Kiseleva, E.V. & Hallberg, E. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol. Biol. Cell 16, 5152–5162 (2005).

    Article  CAS  Google Scholar 

  14. Bodoor, K. et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J. Cell Sci. 112, 2253–2264 (1999).

    CAS  PubMed  Google Scholar 

  15. Dultz, E. et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 (2008).

    Article  CAS  Google Scholar 

  16. Rasala, B.A., Orjalo, A.V., Shen, Z., Briggs, S. & Forbes, D.J. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl. Acad. Sci. USA 103, 17801–17806 (2006).

    Article  CAS  Google Scholar 

  17. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007).

    Article  CAS  Google Scholar 

  18. Rasala, B.A., Ramos, C., Harel, A. & Forbes, D.J. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell 19, 3982–3996 (2008).

    Article  CAS  Google Scholar 

  19. Walther, T.C. et al. RanGTP mediates nuclear pore complex assembly. Nature 424, 689–694 (2003).

    Article  CAS  Google Scholar 

  20. D'Angelo, M.A., Anderson, D.J., Richard, E. & Hetzer, M.W. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312, 440–443 (2006).

    Article  CAS  Google Scholar 

  21. Maeshima, K. et al. Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J. Cell Sci. 119, 4442–4451 (2006).

    Article  CAS  Google Scholar 

  22. Bach, S. et al. Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).

    Article  CAS  Google Scholar 

  23. Whittaker, S.R. et al. The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell Cycle 6, 3114–3131 (2007).

    Article  CAS  Google Scholar 

  24. Ikegami, S. et al. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275, 458–460 (1978).

    Article  CAS  Google Scholar 

  25. Pedrali-Noy, G. et al. Synchronization of HeLa cell cultures by inhibition of DNA polymerase α with aphidicolin. Nucleic Acids Res. 8, 377–387 (1980).

    Article  CAS  Google Scholar 

  26. Maul, H.M., Hsu, B.Y., Borun, T.M. & Maul, G.G. Effect of metabolic inhibitors on nuclear pore formation during the HeLa S3 cell cycle. J. Cell Biol. 59, 669–676 (1973).

    Article  CAS  Google Scholar 

  27. Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    Article  CAS  Google Scholar 

  28. Kill, I.R. Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J. Cell Sci. 109, 1253–1263 (1996).

    CAS  PubMed  Google Scholar 

  29. Leung, A.K. & Lamond, A.I. The dynamics of the nucleolus. Crit. Rev. Eukaryot. Gene Expr. 13, 39–54 (2003).

    Article  CAS  Google Scholar 

  30. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  31. Rekas, A., Alattia, J.R., Nagai, T., Miyawaki, A. & Ikura, M. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J. Biol. Chem. 277, 50573–50578 (2002).

    Article  CAS  Google Scholar 

  32. Katahira, J. et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 18, 2593–2609 (1999).

    Article  CAS  Google Scholar 

  33. Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121 (2004).

    Article  CAS  Google Scholar 

  34. Gray, N.S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  Google Scholar 

  35. Iino, H. et al. Live imaging system for visualizing nuclear pore complex (NPC) formation during interphase in mammalian cells. Genes Cells 15, 647–660 (2010).

    Article  CAS  Google Scholar 

  36. L'Italien, L., Tanudji, M., Russell, L. & Schebye, X.M. Unmasking the redundancy between Cdk1 and Cdk2 at G2 phase in human cancer cell lines. Cell Cycle 5, 984–993 (2006).

    Article  CAS  Google Scholar 

  37. Skoufias, D.A., Indorato, R.L., Lacroix, F., Panopoulos, A. & Margolis, R.L. Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed. J. Cell Biol. 179, 671–685 (2007).

    Article  CAS  Google Scholar 

  38. Dudley, D.T., Pang, L., Decker, S.J., Bridges, A.J. & Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689 (1995).

    Article  CAS  Google Scholar 

  39. Hawryluk-Gara, L.A., Shibuya, E.K. & Wozniak, R.W. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell 16, 2382–2394 (2005).

    Article  CAS  Google Scholar 

  40. Hawryluk-Gara, L.A., Platani, M., Santarella, R., Wozniak, R.W. & Mattaj, I.W. Nup53 is required for nuclear envelope and nuclear pore complex assembly. Mol. Biol. Cell 19, 1753–1762 (2008).

    Article  CAS  Google Scholar 

  41. Neumann, F.R. & Nurse, P. Nuclear size control in fission yeast. J. Cell Biol. 179, 593–600 (2007).

    Article  CAS  Google Scholar 

  42. Jorgensen, P. et al. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell 18, 3523–3532 (2007).

    Article  CAS  Google Scholar 

  43. Huber, M.D. & Gerace, L. The size-wise nucleus: nuclear volume control in eukaryotes. J. Cell Biol. 179, 583–584 (2007).

    Article  CAS  Google Scholar 

  44. Zink, D., Fischer, A.H. & Nickerson, J.A. Nuclear structure in cancer cells. Nat. Rev. Cancer 4, 677–687 (2004).

    Article  CAS  Google Scholar 

  45. Ohashi, M. et al. A new human diploid cell strain, TIG-1, for the research on cellular aging. Exp. Gerontol. 15, 121–133 (1980).

    Article  CAS  Google Scholar 

  46. Yahata, K. et al. cHS4 insulator-mediated alleviation of promoter interference during cell-based expression of tandemly associated transgenes. J. Mol. Biol. 374, 580–590 (2007).

    Article  CAS  Google Scholar 

  47. Maeshima, K. & Laemmli, U.K. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4, 467–480 (2003).

    Article  CAS  Google Scholar 

  48. Peranen, H., Rikkonen, M. & Kaariainen, L. A method for exposing hidden antigenic sites in paraformaldehyde-fixed cultured cells, applied to initially unreactive antibodies. J. Histochem. Cytochem. 41, 447–454 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Hamasuna and Y. Sasaki for competent technical assistance in this study; K. Wilson (Johns Hopkins Univ.), A. Miyawaki (RIKEN), T. Nagai (Hokkaido Univ.), R. Tsien (Univ. of California, San Diego), T. Tachibana (Osaka City Univ.), V. Doye (Institut Jacques Monod), G. Felsenfeld (US National Institutes of Health), B. Burke (Institute of Medical Biology) and M. Takagi (RIKEN) for their generous gifts of materials; M. Hiroshima, T. Haraguchi, H. Araki and members of the Cellular Dynamics Lab at RIKEN for helpful discussions; and H. Niki for the access to DeltaVision microscope at the Japanese National Institute of Genetics. This work was supported by a Japanese Ministry of Education, Culture, Sports, Science and Technology grant-in-aid, by RIKEN Special Project Funding for Basic Science (Bioarchitect Project) and by RIKEN R&D (President's Discretionary Fund).

Author information

Authors and Affiliations

Authors

Contributions

K.M. designed the experiments; K.M., H.I. and S.H. performed most of the experiments; A.W. assisted with some experiments; R.N., K.M. and T.H. performed cryo-SEM observations; M.N., K.M. and H.Y. carried out quantitative analyses; T.F., K.Y. and F.I. made some materials; N.I. advised throughout the study; K.M. and N.I. wrote the paper.

Corresponding authors

Correspondence to Kazuhiro Maeshima or Naoko Imamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 9392 kb)

Supplementary Video 1

Time-lapse movie of HeLa cells stably expressing H2B–mRFP1 and EGFP (MOV 4058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeshima, K., Iino, H., Hihara, S. et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol 17, 1065–1071 (2010). https://doi.org/10.1038/nsmb.1878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing