Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains

Abstract

Gemin5 binds specifically to the small nuclear RNA (snRNA)-defining small nuclear ribonucleoprotein (snRNP) code sequence and is essential, together with other components of the survival of motor neurons (SMN) complex, for the biogenesis of snRNPs, the major constituents of spliceosomes. We show that this binding is mediated by Gemin5's WD repeat domain, a common domain not previously known to bind RNA independently. The entire WD repeat domain, comprising 13 WD motifs, is both necessary and sufficient for sequence-specific, high-affinity binding of Gemin5 to its RNA targets. Using an RNA-mediated hydroxyl radical probing method and mass spectrometry, we mapped a discrete region of the WD repeat domain that contacts snRNAs and demonstrated by mutagenesis that specific amino acids in this region are crucial for Gemin5-snRNA binding. The WD repeat domain is thus a previously undescribed RNA binding domain, and we suggest that the presence of WD repeats should be considered as predictive of potential function in RNA binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The WD repeat domain of Gemin5 (G5) specifically binds to RNAs containing a snRNP code sequence.
Figure 2: Mapping of the RNA binding site in the WD repeat domain of Gemin5 (G5).
Figure 3: Mapping of the RNA binding site in the WD repeat domain.
Figure 4: A model of the predicted structure of Gemin5's WD repeat domain.
Figure 5: Site-directed mutagenesis of Gemin5 (G5) and its effect on RNA binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).

    Article  CAS  Google Scholar 

  2. Fischer, U., Liu, Q. & Dreyfuss, G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90, 1023–1029 (1997).

    Article  CAS  Google Scholar 

  3. Meister, G., Buhler, D., Pillai, R., Lottspeich, F. & Fischer, U. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat. Cell Biol. 3, 945–949 (2001).

    Article  CAS  Google Scholar 

  4. Will, C.L. & Luhrmann, R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001).

    Article  CAS  Google Scholar 

  5. Carissimi, C. et al. Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J. Biol. Chem. 281, 8126–8134 (2006).

    Article  CAS  Google Scholar 

  6. Liu, Q., Fischer, U., Wang, F. & Dreyfuss, G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90, 1013–1021 (1997).

    Article  CAS  Google Scholar 

  7. Charroux, B. et al. Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147, 1181–1194 (1999).

    Article  CAS  Google Scholar 

  8. Charroux, B. et al. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J. Cell Biol. 148, 1177–1186 (2000).

    Article  CAS  Google Scholar 

  9. Baccon, J., Pellizzoni, L., Rappsilber, J., Mann, M. & Dreyfuss, G. Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J. Biol. Chem. 277, 31957–31962 (2002).

    Article  CAS  Google Scholar 

  10. Gubitz, A.K. et al. Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J. Biol. Chem. 277, 5631–5636 (2002).

    Article  CAS  Google Scholar 

  11. Pellizzoni, L., Baccon, J., Rappsilber, J., Mann, M. & Dreyfuss, G. Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J. Biol. Chem. 277, 7540–7545 (2002).

    Article  CAS  Google Scholar 

  12. Carissimi, C. et al. Unrip is a component of SMN complexes active in snRNP assembly. FEBS Lett. 579, 2348–2354 (2005).

    Article  CAS  Google Scholar 

  13. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  Google Scholar 

  14. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16, 265–269 (1997).

    Article  CAS  Google Scholar 

  15. Wan, L. et al. The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol. Cell. Biol. 25, 5543–5551 (2005).

    Article  CAS  Google Scholar 

  16. Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600 (2008).

    Article  CAS  Google Scholar 

  17. Raker, V.A., Plessel, G. & Luhrmann, R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 15, 2256–2269 (1996).

    Article  CAS  Google Scholar 

  18. Yong, J., Wan, L. & Dreyfuss, G. Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol. 14, 226–232 (2004).

    Article  CAS  Google Scholar 

  19. Battle, D.J. et al. The Gemin5 protein of the SMN complex identifies snRNAs. Mol. Cell 23, 273–279 (2006).

    Article  CAS  Google Scholar 

  20. Golembe, T.J., Yong, J. & Dreyfuss, G. Specific sequence features, recognized by the SMN complex, identify snRNAs and determine their fate as snRNPs. Mol. Cell. Biol. 25, 10989–11004 (2005).

    Article  CAS  Google Scholar 

  21. Patel, A.A. & Steitz, J.A. Splicing double: insights from the second spliceosome. Nat. Rev. Mol. Cell Biol. 4, 960–970 (2003).

    Article  CAS  Google Scholar 

  22. Yong, J., Golembe, T.J., Battle, D.J., Pellizzoni, L. & Dreyfuss, G. snRNAs contain specific SMN-binding domains that are essential for snRNP assembly. Mol. Cell. Biol. 24, 2747–2756 (2004).

    Article  CAS  Google Scholar 

  23. Lunde, B.M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  Google Scholar 

  24. Burd, C.G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    Article  CAS  Google Scholar 

  25. Neer, E.J., Schmidt, C.J., Nambudripad, R. & Smith, T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  CAS  Google Scholar 

  26. Li, D. & Roberts, R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell. Mol. Life Sci. 58, 2085–2097 (2001).

    Article  CAS  Google Scholar 

  27. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  28. Kent, O.A. & MacMillan, A.M. Early organization of pre-mRNA during spliceosome assembly. Nat. Struct. Biol. 9, 576–581 (2002).

    CAS  PubMed  Google Scholar 

  29. Datwyler, S.A. & Meares, C.F. Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase. Trends Biochem. Sci. 25, 408–414 (2000).

    Article  CAS  Google Scholar 

  30. Mohri, K., Vorobiev, S., Fedorov, A.A., Almo, S.C. & Ono, S. Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments. J. Biol. Chem. 279, 31697–31707 (2004).

    Article  CAS  Google Scholar 

  31. Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520 (2000).

    Article  CAS  Google Scholar 

  32. Labarga, A., Valentin, F., Andersson, M. & Lopez, R. Web services at the European Bioinfomatics Institute. Nucleic Acids Res. 35, W6–W11 (2007).

    Article  Google Scholar 

  33. Kickhoefer, V.A., Stephen, A.G., Harrington, L., Robinson, M.O. & Rome, L.H. Vaults and telomerase share a common subunit, TEP1. J. Biol. Chem. 274, 32712–32717 (1999).

    Article  CAS  Google Scholar 

  34. Lukowiak, A.A. et al. Interaction of the U3–55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3–55k. Nucleic Acids Res. 28, 3462–3471 (2000).

    Article  CAS  Google Scholar 

  35. Granneman, S. et al. The hU3–55K protein requires 15.5K binding to the box B/C motif as well as flanking RNA elements for its association with the U3 small nucleolar RNA in Vitro. J. Biol. Chem. 277, 48490–48500 (2002).

    Article  CAS  Google Scholar 

  36. Yong, J., Pellizzoni, L. & Dreyfuss, G. Sequence-specific interaction of U1 snRNA with the SMN complex. EMBO J. 21, 1188–1196 (2002).

    Article  CAS  Google Scholar 

  37. Cohen, S.B. & Cech, T.R. Dynamics of thermal motions within a large catalytic RNA investigated by cross-linking with thiol-disulfide interchange. J. Am. Chem. Soc. 119, 6259–6268 (1997).

    Article  CAS  Google Scholar 

  38. Newcomb, L.F. & Noller, H.F. Directed hydroxyl radical probing of 16S rRNA in the ribosome: spatial proximity of RNA elements of the 3′ and 5′ domains. RNA 5, 849–855 (1999).

    Article  CAS  Google Scholar 

  39. Voegtli, W.C., Madrona, A.Y. & Wilson, D.K. The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J. Biol. Chem. 278, 34373–34379 (2003).

    Article  CAS  Google Scholar 

  40. Petrey, D. & Honig, B. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol. 374, 492–509 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory, especially D. Battle, L. Wan, J. Yong, M. Kasim and I. Younis, for stimulating discussions and helpful comments on this manuscript. We thank S. Pesiridis and K. Lorenz for help with mass spectrometry. This work was supported by the Association Française Contre les Myopathies (AFM). G.D. is funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C-k.L. designed and performed the experiments and wrote the manuscript; J.L.B. performed the experiments; G.D. directed the project, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Gideon Dreyfuss.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Tables 1 and 2 (PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, Ck., Bachorik, J. & Dreyfuss, G. Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains. Nat Struct Mol Biol 16, 486–491 (2009). https://doi.org/10.1038/nsmb.1584

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing