Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure

Abstract

Histone methylation regulates chromatin function dependent on the site and degree of the modification. In addition to creating binding sites for proteins, methylated lysine residues are likely to influence chromatin structure directly. Here we present crystal structures of nucleosomes reconstituted with methylated histones and investigate the folding behavior of resulting arrays. We demonstrate that dimethylation of histone H3 at lysine residue 79 locally alters the nucleosomal surface, whereas trimethylation of H4 at lysine residue 20 affects higher-order structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of nucleosomes containing H3Kc79me2 and H4Kc20me3.
Figure 2: Sedimentation velocity analysis of unmodified, H3Kc79Me2 and H4Kc20Me3 nucleosomal arrays.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Martin, C. & Zhang, Y. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  2. Pal, S. & Sif, S. J. Cell. Physiol. 213, 306–315 (2007).

    Article  CAS  Google Scholar 

  3. van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. Cell 109, 745–756 (2002).

    Article  CAS  Google Scholar 

  4. Simon, M.D. et al. Cell 128, 1003–1012 (2007).

    Article  CAS  Google Scholar 

  5. Barski, A. et al. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  6. Mikkelsen, T.S. et al. Nature 448, 553–560 (2007).

    Article  CAS  Google Scholar 

  7. Luger, K., Maeder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–259 (1997).

    Article  CAS  Google Scholar 

  8. Dyer, P.N. et al. Methods Enzymol. 375, 23–44 (2004).

    Article  CAS  Google Scholar 

  9. Chodaparambil, J.V. et al. Nat. Struct. Mol. Biol. 14, 1105–1107 (2007).

    Article  CAS  Google Scholar 

  10. Zhou, J., Fan, J.Y., Rangasamy, D. & Tremethick, D.J. Nat. Struct. Mol. Biol. 14, 1070–1076 (2007).

    Article  CAS  Google Scholar 

  11. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  12. Gordon, F., Luger, K. & Hansen, J.C. J. Biol. Chem. 280, 33701–33706 (2005).

    Article  CAS  Google Scholar 

  13. Shogren-Knaak, M. et al. Science 311, 844–847 (2006).

    Article  CAS  Google Scholar 

  14. Dorigo, B. et al. Science 306, 1571–1573 (2004).

    Article  CAS  Google Scholar 

  15. Ebralidse, K.K., Grachev, S.A. & Mirzabekov, A.D.A. Nature 331, 365–367 (1988).

    Article  CAS  Google Scholar 

  16. Nikitina, T. et al. J. Biol. Chem. 282, 28237–28245 (2007).

    Article  CAS  Google Scholar 

  17. Lowary, P.T. & Widom, J. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  18. Hansen, J.C. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  Google Scholar 

  19. Tsunaka, Y., Kajimura, N., Tate, S. & Morikawa, K. Nucleic Acids Res. 33, 3424–3434 (2005).

    Article  CAS  Google Scholar 

  20. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  Google Scholar 

  21. Owen, D.J. et al. EMBO J. 19, 6141–6149 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Grigoryev (Pennsylvania State University) for the 601 template. This work was supported by a grant from the March of Dimes and the US National Institutes of Health (NIH; GM067777) to K.L., and by NIH grants EB001987 to K.M.S. and GM45916 to J.C.H. K.L. and K.M.S. are supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.L. carried out the crystallographic and array work; M.D.S. made the methylated histone analogues; J.V.C. helped with refinement and figure preparation; J.C.H., K.M.S. and K.L. supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Karolin Luger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Simon, M., Chodaparambil, J. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15, 1122–1124 (2008). https://doi.org/10.1038/nsmb.1489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing