Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin

Abstract

Heterochromatin assembly, involving methylation of histone H3 lysine 9 (H3K9me), regulates various chromosomal processes. In fission yeast, heterochromatin targeted to specific repeat loci in an RNAi-dependent manner spreads across extended domains to exert regional epigenetic control. The Clr4 methyltransferase complex (ClrC) is responsible for nucleation and spreading of heterochromatin; however, its recruitment to heterochromatic repeats is poorly understood. Here we demonstrate that ClrC components are distributed throughout heterochromatic domains. To nucleate heterochromatin, Rik1, a WD domain–containing subunit of ClrC, is loaded onto the transcribed repeats via RNAi machinery including the RNA-induced transcriptional silencing (RITS) complex. Furthermore, we show that the chromodomain of Clr4 binds specifically to H3K9me that is essential for the spreading of heterochromatin. Our analyses delineate sequential steps for the assembly of heterochromatic domains and suggest that the ability of Clr4 to both 'write' and 'read' H3K9me facilitates heterochromatin maintenance through successive cell divisions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome distribution profiles of ClrC components.
Figure 2: RNAi-dependent loading of Rik1.
Figure 3: ClrC interacts with RITS.
Figure 4: Clr4 chromodomain specifically binds H3K9me in vitro.
Figure 5: Clr4 binding to H3K9me facilitates the spreading of ClrC.
Figure 6: Role of the Clr4 chromodomain in the maintenance of heterochromatin.
Figure 7: Model showing RNAi-mediated nucleation and spreading of heterochromatin.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ebert, A., Lein, S., Schotta, G. & Reuter, G. Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res. 14, 377–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Lamb, J.C., Yu, W., Han, F. & Birchler, J.A. Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. Curr. Opin. Plant Biol. 10, 116–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Talbert, P.B. & Henikoff, S. Spreading of silent chromatin: inaction at a distance. Nat. Rev. Genet. 7, 793–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Grewal, S.I. & Elgin, S.C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama, J., Klar, A.J. & Grewal, S.I. A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell 101, 307–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Wallace, J.A. & Orr-Weaver, T.L. Replication of heterochromatin: insights into mechanisms of epigenetic inheritance. Chromosoma 114, 389–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Gregory, R.I. & Shiekhattar, R. Chromatin modifiers and carcinogenesis. Trends Cell Biol. 14, 695–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Cam, H.P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    CAS  PubMed  Google Scholar 

  12. Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev. 19, 2301–2306 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA 102, 152–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Irvine, D.V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science 313, 1134–1137 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zofall, M. & Grewal, S.I. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb. Symp. Quant. Biol. 71, 487–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, E.S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama, Ji, Allshire, R.C., Klar, A.J. & Grewal, S.I. A role for DNA polymerase α in epigenetic control of transcriptional silencing in fission yeast. EMBO J. 20, 2857–2866 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  22. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol. 15, 1808–1819 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Shankaranarayana, G.D., Motamedi, M.R., Moazed, D. & Grewal, S.I. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13, 1240–1246 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Freeman-Cook, L.L. et al. Conserved locus-specific silencing functions of Schizosaccharomyces pombe sir2+. Genetics 169, 1243–1260 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicolas, E. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat. Struct. Mol. Biol. 14, 372–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Wiren, M. et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 24, 2906–2918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ivanova, A.V., Bonaduce, M.J., Ivanov, S.V. & Klar, A.J. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat. Genet. 19, 192–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Horn, P.J., Bastie, J.N. & Peterson, C.L.A. Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 19, 1705–1714 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong, E.J., Villen, J., Gerace, E.L., Gygi, S.P. & Moazed, D. A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3–K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol. 2, 106–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Jia, S., Kobayashi, R. & Grewal, S.I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol. 7, 1007–1013 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Thon, G. et al. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171, 1583–1595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neuwald, A.F. & Poleksic, A. PSI-BLAST searches using hidden Markov models of structural repeats: prediction of an unusual sliding DNA clamp and of β-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res. 28, 3570–3580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, F. et al. Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol. 15, 1448–1457 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Greil, F. et al. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 17, 2825–2838 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Holmberg, C. et al. Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev. 19, 853–862 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia, S., Noma, K. & Grewal, S.I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Yamada, T., Fischle, W., Sugiyama, T., Allis, C.D. & Grewal, S.I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Partridge, J.F. et al. Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol. Cell 26, 593–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Mellone, B.G. et al. Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr. Biol. 13, 1748–1757 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Filipowicz, W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Hampsey, M. & Reinberg, D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113, 429–432 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3–K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stewart, M.D., Li, J. & Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. 25, 2525–2538 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cowieson, N.P., Partridge, J.F., Allshire, R.C. & McLaughlin, P.J. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr. Biol. 10, 517–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Jackson, V. & Chalkley, R. Histone segregation on replicating chromatin. Biochemistry 24, 6930–6938 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Quivy, J.P. et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23, 3516–3526 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Greenall, A. et al. Hip3 interacts with the HIRA proteins Hip1 and Slm9 and is required for transcriptional silencing and accurate chromosome segregation. J. Biol. Chem. 281, 8732–8739 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Higa, L.A. et al. CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 8, 1277–1283 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Peterson (University of Massachusetts Medical School, Worcester, MA, USA) and R. Allshire (Wellcome Trust Center for Cell Biology, Edinburgh) for strains, members of the Grewal laboratory for helpful discussions, and S. Jia and C. Denby for strain constructions. We also thank H. Cam for editing the manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv I S Grewal.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 8356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Mosch, K., Fischle, W. et al. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15, 381–388 (2008). https://doi.org/10.1038/nsmb.1406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing