Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-DNA antibodies — quintessential biomarkers of SLE

Key Points

  • Antibodies that recognize DNA (anti-DNA antibodies) can bind to sites on the phosphodiester backbone of single-stranded DNA and double-stranded DNA, to nucleotide sequences or to higher-order structures such as nucleosomes

  • The molecular properties of anti-DNA antibodies, as well as the associated genetic properties, including variable-region somatic mutations, point to a role for antigen selection in anti-DNA antibody generation

  • In the absence of a 'gold standard', various assay formats exist for anti-DNA antibody testing, differing in the nature of DNA substrates and the conditions for binding and detection of antibodies

  • High-affinity binding by an anti-DNA antibody depends on monogamous bivalency, in which both Fab sites of an IgG molecule contact the same polynucleotide chain

  • The use of anti-DNA antibody testing as a measure of disease activity to determine clinical trial eligibility depends on clear understanding of assay differences and the role of anti-DNA antibodies in pathogenesis

Abstract

Antibodies that recognize and bind to DNA (anti-DNA antibodies) are serological hallmarks of systemic lupus erythematosus (SLE) and key markers for diagnosis and disease activity. In addition to common use in the clinic, anti-DNA antibody testing now also determines eligibility for clinical trials, raising important questions about the nature of the antibody–antigen interaction. At present, no 'gold standard' for serological assessment exists, and anti-DNA antibody binding can be measured with a variety of assay formats, which differ in the nature of the DNA substrates and in the conditions for binding and detection of antibodies. A mechanism called monogamous bivalency — in which high avidity results from simultaneous interaction of IgG Fab sites with a single polynucleotide chain — determines anti-DNA antibody binding; this mechanism might affect antibody detection in different assay formats. Although anti-DNA antibodies can promote pathogenesis by depositing in the kidney or driving cytokine production, they are not all alike, pathologically, and anti-DNA antibody expression does not necessarily correlate with active disease. Levels of anti-DNA antibodies in patients with SLE can vary over time, distinguishing anti-DNA antibodies from other pathogenic antinuclear antibodies. Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The release of DNA from dead and dying cells.
Figure 2: The relationship between IgG antibodies and double-stranded DNA.
Figure 3: The induction of anti-DNA antibodies by bacterial DNA.
Figure 4: Antinuclear antibodies and disease activity in SLE.

Similar content being viewed by others

References

  1. Hahn, B. H. Antibodies to DNA. N. Engl. J. Med. 338, 1359–1368 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Jang, Y. J. & Stollar, B. D. Anti-DNA antibodies: aspects of structure and pathogenicity. Cell. Mol. Life Sci. 60, 309–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Breden, F. et al. Comparison of antibody repertoires produced by HIV-1 infection, other chronic and acute infections, and systemic autoimmune disease. PLoS ONE 6, e16857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dörner, T., Giesecke, C. & Lipsky, P. E. Mechanisms of B cell autoimmunity in SLE. Arthritis Res. Ther. 13, 243 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Vollenhoven, R. F. et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann. Rheum. Dis. 71, 1343–1349 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Egner, W. The use of laboratory tests in the diagnosis of SLE. J. Clin. Pathol. 53, 424–432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rekvig, O. P. The anti-DNA antibody: origin and impact, dogmas and controversies. Nat. Rev. Rheumatol. 11, 530–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Ceppellini, R., Polli, E. & Celada, F. A DNA-reacting factor in serum of a patient with lupus erythematosus diffusus. Proc. Soc. Exp. Biol. Med. 96, 572–574 (1957).

    Article  CAS  PubMed  Google Scholar 

  11. Miescher, P. & Strassle, R. New serological methods for the detection of the L.E. factor. Vox Sang. 2, 283–287 (1957).

    Article  CAS  PubMed  Google Scholar 

  12. Robbins, W. C., Holman, H. R., Deicher, H. & Kunkel, H. G. Complement fixation with cell nuclei and DNA in lupus erythematosus. Proc. Soc. Exp. Biol. Med. 96, 575–579 (1957).

    Article  CAS  PubMed  Google Scholar 

  13. Seligmann, M. [Demonstration in the blood of patients with disseminated lupus erythematosus a substance determining a precipitation reaction with desoxyribonucleic acid][French]. C. R. Hebd. Seances Acad. Sci. 245, 243–245 (1957).

    CAS  PubMed  Google Scholar 

  14. Stollar, B. D. & Papalian, M. Secondary structure in denatured DNA is responsible for its reaction with antinative DNA antibodies of systemic lupus erythematosus sera. J. Clin. Invest. 66, 210–219 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pisetsky, D. S. Standardization of anti-DNA antibody assays. Immunol. Res. 56, 420–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Stollar, B. D. The specificity and applications of antibodies to helical nucleic acids. CRC Crit. Rev. Biochem. 3, 45–69 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. van Steensel, B. Chromatin: constructing the big picture. EMBO J. 30, 1885–1895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Choy, J. S. & Lee, T. H. Structural dynamics of nucleosomes at single-molecule resolution. Trends Biochem. Sci. 37, 425–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grootscholten, C. et al. A prospective study of anti-chromatin and anti-C1q autoantibodies in patients with proliferative lupus nephritis treated with cyclophosphamide pulses or azathioprine/methylprednisolone. Ann. Rheum. Dis. 66, 693–696 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Bigler, C. et al. Antinucleosome antibodies as a marker of active proliferative lupus nephritis. Am. J. Kidney Dis. 51, 624–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Mehra, S. & Fritzler, M. J. The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J. Immunol. Res. 2014, 368274 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rekvig, O. P., van der Vlag, J. & Seredkina, N. Review: antinucleosome antibodies: a critical reflection on their specificities and diagnostic impact. Arthritis Rheumatol. 66, 1061–1069 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Li, T. et al. Anti-nucleosome antibodies outperform traditional biomarkers as longitudinal indicators of disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 54, 449–457 (2015).

    Article  CAS  Google Scholar 

  25. Burlingame, R. W., Rubin, R. L., Balderas, R. S. & Theofilopoulos, A. N. Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self antigen. J. Clin. Invest. 91, 1687–1696 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burlingame, R. W., Boey, M. L., Starkebaum, G. & Rubin, R. L. The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J. Clin. Invest. 94, 184–192 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  28. Jiang, N., Reich, C. F. 3rd & Pisetsky, D. S. Role of macrophages in the generation of circulating blood nucleosomes from dead and dying cells. Blood 102, 2243–2250 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Tsang, J. C. & Lo, Y. M. Circulating nucleic acids in plasma/serum. Pathology 39, 197–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Pisetsky, D. S. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin. Immunol. 144, 32–40 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pisetsky, D. S. The translocation of nuclear molecules during inflammation and cell death. Antioxid. Redox Signal. 20, 1117–1125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Nyström, S. et al. TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO J. 32, 86–99 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Yang, H., Antoine, D. J., Andersson, U. & Tracey, K. J. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J. Leukoc. Biol. 93, 865–873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pisetsky, D. S. The complex role of DNA, histones and HMGB1 in the pathogenesis of SLE. Autoimmunity 47, 487–493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Atamaniuk, J. et al. Analysing cell-free plasma DNA and SLE disease activity. Eur. J. Clin. Invest. 41, 579–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, S. et al. Elevated plasma cfDNA may be associated with active lupus nephritis and partially attributed to abnormal regulation of neutrophil extracellular traps (NETs) in patients with systemic lupus erythematosus. Intern. Med. 53, 2763–2771 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Ullal, A. J. et al. Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus. J. Autoimmun. 36, 173–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen, C. T. et al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 64, 1227–1236 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rekvig, O. P. Anti-dsDNA antibodies as a classification criterion and a diagnostic marker for systemic lupus erythematosus: critical remarks. Clin. Exp. Immunol. 179, 5–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Ward, M. M., Pisetsky, D. S. & Christenson, V. D. Antidouble stranded DNA antibody assays in systemic lupus erythematosus: correlations of longitudinal antibody measurements. J. Rheumatol. 16, 609–613 (1989).

    CAS  PubMed  Google Scholar 

  46. Venner, A. A. et al. Comparison of three anti-dsDNA assays: performance and correlation with systemic lupus erythematosus disease activity. Clin. Biochem. 46, 317–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Enocsson, H. et al. Four anti-dsDNA antibody assays in relation to systemic lupus erythematosus disease specificity and activity. J. Rheumatol. 42, 817–825 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Arden, L. A., Lakmaker, F. & Feltkamp, T. E. Immunology of DNA. II. The effect of size and structure of the antigen on the Farr assay. J. Immunol. Methods 10, 39–48 (1976).

    Article  CAS  PubMed  Google Scholar 

  49. Hillebrand, J. J., Bernelot Moens, H. J. & Mulder, A. H. Changes in Farr radioimmunoassay and EliA fluorescence immunoassay anti-dsDNA in relation to exacerbation of SLE. Lupus 22, 1169–1173 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Crothers, D. M. & Metzger, H. The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9, 341–357 (1972).

    Article  CAS  PubMed  Google Scholar 

  51. Romans, D. G., Tilley, C. A. & Dorrington, K. J. Monogamous bivalency of IgG antibodies. I. Deficiency of branched ABHI-active oligosaccharide chains on red cells of infants causes the weak antiglobulin reactions in hemolytic disease of the newborn due to ABO incompatibility. J. Immunol. 124, 2807–2811 (1980).

    CAS  PubMed  Google Scholar 

  52. Kaufman, E. N. & Jain, R. K. Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays. Cancer Res. 52, 4157–4167 (1992).

    CAS  PubMed  Google Scholar 

  53. Werner, T. C., Bunting, J. R. & Cathou, R. E. The shape of immunoglobulin G molecules in solution. Proc. Natl Acad. Sci. USA 69, 795–799 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papalian, M., Lafer, E., Wong, R. & Stollar, B. D. Reaction of systemic lupus erythematosus antinative DNA antibodies with native DNA fragments from 20 to 1,200 base pairs. J. Clin. Invest. 65, 469–477 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ali, R., Dersimonian, H. & Stollar, B. D. Binding of monoclonal anti-native DNA autoantibodies to DNA of varying size and conformation. Mol. Immunol. 22, 1415–1422 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Pisetsky, D. S. & Reich, C. F. The influence of DNA size on the binding of anti-DNA antibodies in the solid and fluid phase. Clin. Immunol. Immunopathol. 72, 350–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Lennek, R., Baldwin, A. S. Jr, Waller, S. J., Morley, K. W. & Taylor, R. P. Studies of the physical biochemistry and complement-fixing properties of DNA/anti-DNA immune complexes. J. Immunol. 127, 602–608 (1981).

    CAS  PubMed  Google Scholar 

  58. Waller, S. J., Taylor, R. P., Wright, E. L., Morley, K. W. & Johns, M. DNA/anti-DNA complexes: correlation of size and complement fixation. Arthritis Rheum. 24, 651–657 (1981).

    Article  CAS  PubMed  Google Scholar 

  59. Radic, M. Z. et al. Residues that mediate DNA binding of autoimmune antibodies. J. Immunol. 150, 4966–4977 (1993).

    CAS  PubMed  Google Scholar 

  60. Radic, M. Z. & Weigert, M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Ann. Rev. Immunol. 12, 487–520 (1994).

    Article  CAS  Google Scholar 

  61. Li, Z., Schettino, E. W., Padlan, E. A., Ikematsu, H. & Casali, P. Structure-function analysis of a lupus anti-DNA autoantibody: central role of the heavy chain complementarity-determining region 3 Arg in binding of double- and single-stranded DNA. Eur. J. Immunol. 30, 2015–2026 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, J., Jacobi, A. M., Wang, T. & Diamond, B. Pathogenic autoantibodies in systemic lupus erythematosus are derived from both self-reactive and non-self-reactive B cells. Mol. Med. 14, 675–681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richardson, C. et al. Molecular basis of 9G4 B cell autoreactivity in human systemic lupus erythematosus. J. Immunol. 191, 4926–4939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schroeder, K., Herrmann, M. & Winkler, T. H. The role of somatic hypermutation in the generation of pathogenic antibodies in SLE. Autoimmunity 46, 121–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Mohan, C., Adams, S., Stanik, V. & Datta, S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177, 1367–1381 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Kaliyaperumal, A., Mohan, C., Wu, W. & Datta, S. K. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J. Exp. Med. 183, 2459–2469 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Sano, H. & Morimoto, C. DNA isolated from DNA/anti-DNA antibody immune complexes in systemic lupus erythematosus is rich in guanine-cytosine content. J. Immunol. 128, 1341–1345 (1982).

    CAS  PubMed  Google Scholar 

  68. Rumore, P. M. & Steinman, C. R. Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J. Clin. Invest. 86, 69–74 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chan, R. W. et al. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc. Natl Acad. Sci. USA 111, E5302–E5311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sano, H. et al. Binding properties of human anti-DNA antibodies to cloned human DNA fragments. Scand. J. Immunol. 30, 51–63 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Uccellini, M. B., Busto, P., Debatis, M., Marshak-Rothstein, A. & Viglianti, G. A. Selective binding of anti-DNA antibodies to native dsDNA fragments of differing sequence. Immunol. Lett. 143, 85–91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karounos, D. G., Grudier, J. P. & Pisetsky, D. S. Spontaneous expression of antibodies to DNA of various species origin in sera of normal subjects and patients with systemic lupus erythematosus. J. Immunol. 140, 451–455 (1988).

    CAS  PubMed  Google Scholar 

  73. Robertson, C. R., Gilkeson, G. S., Ward, M. M. & Pisetsky, D. S. Patterns of heavy and light chain utilization in the antibody response to single-stranded bacterial DNA in normal human subjects and patients with systemic lupus erythematosus. Clin. Immunol. Immunopathol. 62, 25–32 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Bunyard, M. P. & Pisetsky, D. S. Characterization of antibodies to bacterial double-stranded DNA in the sera of normal human subjects. Int. Arch. Allergy Immunol. 105, 122–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Fredriksen, K., Skogsholm, A., Flaegstad, T., Traavik, T. & Rekvig, O. P. Antibodies to dsDNA are produced during primary BK virus infection in man, indicating that anti-dsDNA antibodies may be related to virus replication in vivo. Scand. J. Immunol. 38, 401–406 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Fredriksen, K., Osei, A., Sundsfjord, A., Traavik, T. & Rekvig, O. P. On the biological origin of anti-double-stranded (ds) DNA antibodies: systemic lupus erythematosus-related anti-dsDNA antibodies are induced by polyomavirus BK in lupus-prone (NZBxNZW) F1 hybrids, but not in normal mice. Eur. J. Immunol. 24, 66–70 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Pisetsky, D. S. & Drayton, D. M. Deficient expression of antibodies specific for bacterial DNA by patients with systemic lupus erythematosus. Proc. Assoc. Am. Physicians 109, 237–244 (1997).

    CAS  PubMed  Google Scholar 

  78. Hamilton, K. J., Schett, G., Reich, C. F. 3rd, Smolen, J. S. & Pisetsky, D. S. The binding of sera of patients with SLE to bacterial and mammalian DNA. Clin. Immunol. 118, 209–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, X., Stearns, N. A., Li, X. & Pisetsky, D. S. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects. Clin. Immunol. 153, 94–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koffler, D., Agnello, V., Thoburn, R. & Kunkel, H. G. Systemic lupus erythematosus: prototype of immune complex nephritis in man. J. Exp. Med. 134, 169–179 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bruneau, C. & Benveniste, J. Circulating DNA:anti-DNA complexes in systemic lupus erythematosus. Detection and characterization by ultracentrifugation. J. Clin. Invest. 64, 191–198 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morimoto, C., Sano, H., Abe, T., Homma, M. & Steinberg, A. D. Correlation between clinical activity of systemic lupus erythematosus and the amounts of DNA in DNA/anti-DNA antibody immune complexes. J. Immunol. 129, 1960–1965 (1982).

    CAS  PubMed  Google Scholar 

  83. Tron, F., Letarte, J., Roque-Antunes Barreira, M. C. & Lesavre, P. Specific detection of circulating DNA:anti-DNA immune complexes in human systemic lupus erythematosus sera using murine monoclonal anti-DNA antibody. Clin. Exp. Immunol. 49, 481–487 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bengtsson, A., Nezlin, R., Shoenfeld, Y. & Sturfelt, G. DNA levels in circulating immune complexes decrease at severe SLE flares-correlation with complement component C1q. J. Autoimmun. 13, 111–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Seredkina, N., Van Der Vlag, J., Berden, J., Mortensen, E. & Rekvig, O. P. Lupus nephritis: enigmas, conflicting models and an emerging concept. Mol. Med. 19, 161–169 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Krishnan, M. R., Wang, C. & Marion, T. N. Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int. 82, 184–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bruschi, M. et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo (2): planted antigens. J. Am. Soc. Nephrol. 26, 1905–1924 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kalaaji, M., Mortensen, E., Jørgensen, L., Olsen, R. & Rekvig, O. P. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol. 168, 1779–1792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mjelle, J. E., Kalaaji, M. & Rekvig, O. P. Exposure of chromatin and not high affinity for dsDNA determines the nephritogenic impact of anti-dsDNA antibodies in (NZBxNZW)F1 mice. Autoimmunity 42, 104–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Zykova, S. N., Tveita, A. A. & Rekvig, O. P. Renal DNase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS ONE 5, e12096 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Seredkina, N. & Rekvig, O. P. Acquired loss of renal nuclease activity is restricted to DNaseI and is an organ-selective feature in murine lupus nephritis. Am. J. Pathol. 179, 1120–1128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vallin, H., Perers, A., Alm, G. V. & Rönnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J. Immunol. 163, 6306–6313 (1999).

    CAS  PubMed  Google Scholar 

  93. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Boulé, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Atianand, M. K. & Fitzgerald, K. A. Molecular basis of DNA recognition in the immune system. J. Immunol. 190, 1911–1918 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Bhat, N. & Fitzgerald, K. A. Recognition of cytosolic DNA by cGAS and other STING-dependent sensors. Eur. J. Immunol. 44, 634–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Eloranta, M. L. et al. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 60, 2418–2427 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mostoslavsky, G. et al. Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur. J. Immunol. 31, 1221–1227 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Zhao, Z. et al. Cross-reactivity of human lupus anti-DNA antibodies with alpha-actinin and nephritogenic potential. Arthritis Rheum. 52, 522–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Manson, J. J. et al. Relationship between anti-dsDNA, anti-nucleosome and anti-alpha-actinin antibodies and markers of renal disease in patients with lupus nephritis: a prospective longitudinal study. Arthritis Res. Ther. 11, R154 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Steiman, A. J. et al. Anti-dsDNA and antichromatin antibody isotypes in serologically active clinically quiescent systemic lupus erythematosus. J. Rheumatol. 42, 810–816 (2015).

    Article  PubMed  Google Scholar 

  105. Mannik, M., Merrill, C. E., Stamps, L. D. & Wener, M. H. Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J. Rheumatol. 30, 1495–1504 (2003).

    PubMed  Google Scholar 

  106. Xie, C., Liang, Z., Chang, S. & Mohan, C. Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum. 48, 2343–2352 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Leffler, J., Bengtsson, A. A. & Blom, A. M. The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis. 73, 1601–1606 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Putterman, C. et al. Cell-bound complement activation products in systemic lupus erythematosus: comparison with anti-double-stranded DNA and standard complement measurements. Lupus Sci. Med. 1, e000056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nielsen, C. T., Østergaard, O., Johnsen, C., Jacobsen, S. & Heegaard, N. H. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum. 63, 3067–3077 (2011).

    Article  PubMed  Google Scholar 

  110. Nielsen, C. T. et al. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis. Lupus 24, 1150–1160 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. McCarty, G. A., Rice, J. R., Bembe, M. L. & Pisetsky, D. S. Independent expression of autoantibodies in systemic lupus erythematosus. J. Rheumatol. 9, 691–695 (1982).

    CAS  PubMed  Google Scholar 

  112. Wahren, M. et al. Ro/SS-A and La/SS-B antibody level variation in patients with Sjögren's syndrome and systemic lupus erythematosus. J. Autoimmun. 11, 29–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Hassan, A. B., Lundberg, I. E., Isenberg, D. & Wahren-Herlenius, M. Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus. Scand. J. Rheumatol. 31, 133–139 (2002).

    Article  PubMed  Google Scholar 

  114. Pisetsky, D. S., Grammer, A. C., Ning, T. C. & Lipsky, P. E. Are autoantibodies the targets of B-cell-directed therapy? Nat. Rev. Rheumatol. 7, 551–556 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Mathsson, L., Ahlin, E., Sjöwall, C., Skogh, T. & Rönnelid, J. Cytokine induction by circulating immune complexes and signs of in-vivo complement activation in systemic lupus erythematosus are associated with the occurrence of anti-Sjogren's syndrome A antibodies. Clin. Exp. Immunol. 147, 513–520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahlin, E. et al. Autoantibodies associated with RNA are more enriched than anti-dsDNA antibodies in circulating immune complexes in SLE. Lupus 21, 586–595 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Pisetsky.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisetsky, D. Anti-DNA antibodies — quintessential biomarkers of SLE. Nat Rev Rheumatol 12, 102–110 (2016). https://doi.org/10.1038/nrrheum.2015.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing