Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain

An Erratum to this article was published on 13 October 2017

This article has been updated

Key Points

  • An imbalance between the production and clearance of amyloid-β (Aβ) is an early, often initiating, factor in Alzheimer disease (AD)

  • Peripheral systems are suggested to be involved in Aβ production and clearance

  • The central and peripheral pathways of Aβ metabolism communicate with each other, and work synergistically to clear Aβ from the brain

  • Increasing experimental, epidemiologic and clinical evidence suggests that AD manifestations extend beyond the brain, and that AD pathogenesis is closely associated with systemic abnormalities

  • The systemic abnormalities in patients with AD might not be secondary to the cerebral degeneration; instead, they might reflect underlying disease processes

  • A systemic view of AD provides a novel perspective for understanding the role of Aβ in AD pathogenesis and offers opportunities for the development of new treatments and diagnostic biomarkers for AD

Abstract

Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological metabolism of Aβ in the brain and periphery.
Figure 2: Systemic abnormalities in AD.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

Change history

  • 13 October 2017

    In the version of this article originally published online, Figure 1 incorrectly labelled the main Aβ molecule in the peripheral pool as Aβ42 instead of Aβ40. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Berk, C., Paul, G. & Sabbagh, M. Investigational drugs in Alzheimer's disease: current progress. Expert Opin. Investig. Drugs 23, 837–846 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016). This article reviews new evidence supporting the concept that an imbalance between production and clearance of Aβ is a very early, often initiating factor, in AD — a widely debated issue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yankner, B. A. & Mesulam, M. M. Seminars in medicine of the Beth Israel Hospital, Boston. β-Amyloid and the pathogenesis of Alzheimer's disease. N. Engl. J. Med. 325, 1849–1857 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Roher, A. E. et al. Amyloid β peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement. 5, 18–29 (2009). This study evaluates Aβ levels in brain, peripheral organs and tissues, suggesting that brain as well as plasma Aβ levels are the consequence of intricate relationships between central and peripehral sources.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, Q. X., Fuller, S. J., Beyreuther, K. & Masters, C. L. The amyloid precursor protein of Alzheimer disease in human brain and blood. J. Leukoc. Biol. 66, 567–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Toledo, J. et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol. 122, 401–413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mehta, P. D., Pirttila, T., Patrick, B. A., Barshatzky, M. & Mehta, S. P. Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett. 304, 102–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Delvaux, E., Bentley, K., Stubbs, V., Sabbagh, M. & Coleman, P. Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes. Neurobiol. Aging 34, 1680–1686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evin, G., Zhu, A., Holsinger, R. M., Masters, C. & Li, Q.-X. Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J. Neurosci. Res. 74, 386–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Biere, A. L. et al. Amyloid β-peptide is transported on lipoproteins and albumin in human plasma. J. Biol. Chem. 271, 32916–32922 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kuo, Y. M. et al. Amyloid-β peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem. Biophys. Res. Commun. 268, 750–756 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Joachim, C. L., Mori, H. & Selkoe, D. J. Amyloid β-protein deposition in tissues other than brain in Alzheimer's disease. Nature 341, 226–230 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Koronyo, Y., Salumbides, B., Black, K. & Koronyo Hamaoui, M. Alzheimer's disease in the retina: imaging retinal Aβ plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 10, 285–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Troncone, L. et al. Aβ amyloid pathology affects the hearts of patients with Alzheimer's disease: mind the heart. J. Am. Coll. Cardiol. 68, 2395–2407 (2016). This article was the first to describe the presence of compromised myocardial function and intramyocardial deposits of Aβ in patients with AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stine, W. B., Dahlgren, K., Krafft, G. & LaDu, M. In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278, 11612–11622 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Murray, M. et al. Amyloid β protein: Aβ40 inhibits Aβ42 oligomerization. J. Am. Chem. Soc. 131, 6316–6317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tarasoff-Conway, J. M. et al. Clearance systems in the brain — implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015). This review summarizes the clearance systems of Aβ and tau in the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yao, X. Q. et al. p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-β toxicity in the brain of Alzheimer's disease. Mol. Psychiatry 20, 1301–1310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao, M. C. et al. N-Terminal domain of myelin basic protein inhibits amyloid β-protein fibril assembly. J. Biol. Chem. 285, 35590–35598 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qosa, H. et al. Differences in amyloid-β clearance across mouse and human blood–brain barrier models: kinetic analysis and mechanistic modeling. Neuropharmacology 79, 668–678 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuede, C. M. et al. Rapid in vivo measurement of β-amyloid reveals biphasic clearance kinetics in an Alzheimer's mouse model. J. Exp. Med. 213, 677–685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiang, Y. et al. Physiological amyloid-β clearance in the periphery and its therapeutic potential for Alzheimer's disease. Acta Neuropathol. 130, 487–499 (2015). This article demonstrates that peripheral clearance systems are potent in clearing brain Aβ and preventing AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradshaw, E. M. et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanekiyo, T. & Bu, G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease. Front. Aging Neurosci. 6, 93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghiso, J. et al. Systemic catabolism of Alzheimer's Aβ40 and Aβ42 . J. Biol. Chem. 279, 45897–45908 (2004). This article demonstrates that the liver is the major organ responsible for uptake and degradation of circulating Aβ 42 and Aβ 40 , followed by the kidney.

    Article  CAS  PubMed  Google Scholar 

  27. Ghiso, J. et al. Alzheimer's soluble amyloid β is a normal component of human urine. FEBS Lett. 408, 105–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Z. et al. Characterization of insulin degrading enzyme and other amyloid-β degrading proteases in human serum: a role in Alzheimer's disease? J. Alzheimers Dis. 29, 329–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mackic, J. B. et al. Human blood–brain barrier receptors for Alzheimer's amyloid-β1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102, 734–743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silverberg, G. D., Mayo, M., Saul, T., Rubenstein, E. & McGuire, D. Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol. 2, 506–511 (2003).

    Article  PubMed  Google Scholar 

  31. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iliff, J. J., Goldman, S. A. & Nedergaard, M. Implications of the discovery of brain lymphatic pathways. Lancet Neurol. 14, 977–979 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eisele, Y. S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010). This study suggests that peripherally derived Aβ might enter the brain and participate in AD pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eisele, Y. S. et al. Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. J. Neurosci. 34, 10264–10273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ritchie, D. L. et al. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol. 134, 221–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaunmuktane, Z. et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525, 247–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Donahue, J. E. et al. RAGE, LRP-1, and amyloid-β protein in Alzheimer's disease. Acta Neuropathol. 112, 405–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–691 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Zenaro, E. et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Frenkel, D. et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat. Commun. 4, 2030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krabbe, G. et al. Functional impairment of microglia coincides with β-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE 8, e60921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zaghi, J. et al. Alzheimer disease macrophages shuttle amyloid-β from neurons to vessels, contributing to amyloid angiopathy. Acta Neuropathol. 117, 111–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gu, B. J. et al. Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer's disease. Acta Neuropathol. 132, 377–389 (2016). This human study demonstrates that innate immunity is compromised in patients with AD.

    Article  CAS  PubMed  Google Scholar 

  46. Darlington, D. et al. Human umbilical cord blood-derived monocytes improve cognitive deficits and reduce amyloid-β pathology in PSAPP mice. Cell Transplant. 24, 2237–22350 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Baruch, K. et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease. Nat. Med. 22, 135–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Prokop, S. et al. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer's disease-like mice. J. Exp. Med. 212, 1811–1818 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hollingworth, P. et al. Common variants at ABCA7. MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Jay, T. R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212, 287–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bartos, A., Fialova, L., Svarcova, J. & Ripova, D. Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. J. Neuroimmunol. 252, 100–105 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y. H. et al. Immunity and Alzheimer's disease: immunological perspectives on the development of novel therapies. Drug Discov. Today 18, 1212–1220 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, T. et al. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer's disease than intravenous immunoglobulin. Neuropharmacology 105, 561–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. DeMarshall, C. A. et al. Detection of Alzheimer's disease at mild cognitive impairment and disease progression using autoantibodies as blood-based biomarkers. Alzheimers Dement. (Amst.) 3, 51–62 (2016).

    Google Scholar 

  56. Monning, U. E. A. in Alzheimer's Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies (eds Iqbal, K. et al.) 557–563 (Wiley–Blackwell, 1991).

    Google Scholar 

  57. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Marsh, S. E. et al. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113, E1316–E1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer's disease pathology. Nat. Commun. 6, 7967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosenberg, R. N. et al. Altered amyloid protein processing in platelets of patients with Alzheimer disease. Arch. Neurol. 54, 139–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Di Luca, M. et al. Abnormal pattern of platelet APP isoforms in Alzheimer disease and Down syndrome. Arch. Neurol. 53, 1162–1166 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Srisawat, C. et al. The platelet amyloid precursor protein ratio as a diagnostic marker for Alzheimer's disease in Thai patients. J. Clin. Neurosci. 20, 644–648 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Doecke, J. D. et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch. Neurol. 69, 1318–1325 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rogers, J. et al. Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes. Neurobiol. Aging 27, 1733–1739 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, S. H. et al. Altered peripheral profile of blood cells in Alzheimer disease: a hospital-based case–control study. Medicine (Baltimore) 96, e6843 (2017).

    Article  CAS  Google Scholar 

  66. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014). This article suggests that anti-ageing molecules exist in young blood. Identification of these protective components could be important in understanding the pathogenesis of AD and in developing systemic rejuvenation therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 73, 1325–1333 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xu, W. et al. Meta-analysis of modifiable risk factors for Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 86, 1299–1306 (2015).

    PubMed  Google Scholar 

  73. Velayudhan, L. et al. Risk of developing dementia in people with diabetes and mild cognitive impairment. Br. J. Psychiatry 196, 36–40 (2010).

    Article  PubMed  Google Scholar 

  74. Tamaki, C., Ohtsuki, S. & Terasaki, T. Insulin facilitates the hepatic clearance of plasma amyloid β-peptide (1–40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol. Pharmacol. 72, 850–855 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Kang, S., Lee, Y. H. & Lee, J. E. Metabolism-centric overview of the pathogenesis of Alzheimer's disease. Yonsei Med. J. 58, 479–488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gasparini, L. et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci. 21, 2561–2570 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Salameh, T. S., Shah, G. N., Price, T. O., Hayden, M. R. & Banks, W. A. Blood–brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate. J. Pharmacol. Exp. Ther. 359, 452–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leuner, K. et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid β formation. Antioxid. Redox Signal. 16, 1421–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moreno-Gonzalez, I. et al. Molecular interaction between type 2 diabetes and Alzheimer's disease through cross-seeding of protein misfolding. Mol. Psychiatry 22, 1327–1334 (2017). This study proposes a new molecular interaction between AD and diabetes mellitus: misfolded amylin (generated in the pancreas in type 2 diabetes mellitus) and Aβ accelerate or exacerbate the misfolding and aggregation of each other by cross-seeding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Biessels, G. J. & Reijmer, Y. D. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 63, 2244–2252 (2014).

    Article  PubMed  Google Scholar 

  81. Lesser, G. T. Association of Alzheimer disease pathology with abnormal lipid metabolism: the Hisayama study. Neurology 78, 1280 (2012).

    Article  PubMed  Google Scholar 

  82. Sato, N. & Morishita, R. The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front. Aging Neurosci. 7, 199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu, J. T., Tan, L. & Hardy, J. Apolipoprotein E in Alzheimer's disease: an update. Annu. Rev. Neurosci. 37, 79–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, C. Y., Tse, W., Smith, J. D. & Landreth, G. E. Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J. Biol. Chem. 287, 2032–2044 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Zissimopoulos, J. M., Barthold, D., Brinton, R. D. & Joyce, G. Sex and race differences in the association between statin use and the incidence of Alzheimer disease. JAMA Neurol. 74, 225–232 (2016).

    Article  Google Scholar 

  86. Reed, B. et al. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 71, 195–200 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zubenko, G. S. et al. Platelet membrane fluidity in Alzheimer's disease and major depression. Am. J. Psychiatry 144, 860–868 (1987).

    Article  CAS  PubMed  Google Scholar 

  88. Collins, J. M., Scott, R. B., McClish, D. K., Taylor, J. R. & Grogan, W. M. Altered membrane anisotropy gradients of plasma membranes of living peripheral blood leukocytes in aging and Alzheimer's disease. Mech. Ageing Dev. 59, 153–162 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Zubenko, G. S. & Howland, R. Markedly increased platelet membrane fluidity in Down syndrome with a (14q, 21q) translocation. J. Geriatr. Psychiatry Neurol. 1, 218–219 (1988).

    CAS  PubMed  Google Scholar 

  90. Scott, R. B., Collins, J. M. & Hunt, P. A. Alzheimer's disease and Down syndrome: leukocyte membrane fluidity alterations. Mech. Ageing Dev. 75, 1–10 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Yassine, H. N. et al. Association of serum docosahexaenoic acid with cerebral amyloidosis. JAMA Neurol. 73, 1208–1216 (2016).

    Article  PubMed  Google Scholar 

  92. Nishihira, J. et al. Associations between serum omega-3 fatty acid levels and cognitive functions among community-dwelling octogenarians in Okinawa, Japan: the KOCOA study. J. Alzheimers Dis. 51, 857–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rusanen, M. et al. Heart diseases and long-term risk of dementia and Alzheimer's disease: a population-based CAIDE study. J. Alzheimers Dis. 42, 183–191 (2014).

    Article  PubMed  Google Scholar 

  94. Qiu, C. et al. Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study. Arch. Intern. Med. 166, 1003–1008 (2006).

    Article  PubMed  Google Scholar 

  95. Jefferson, A. L. et al. Low cardiac index is associated with incident dementia and Alzheimer disease: the Framingham Heart Study. Circulation 131, 1333–1339 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545–551 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, J. et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76, 1485–1491 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Jin, W. S. et al. Reduced cardiovascular functions in patients with Alzheimer's disease. J. Alzheimers Dis. 58, 919–925 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Okamoto, Y. et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 123, 381–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Zetterberg, H. et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS ONE 6, e28263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, L. et al. Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice. Exp. Neurol. 283, 353–364 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Cermakova, P. et al. Heart failure and Alzheimer's disease. J. Intern. Med. 277, 406–425 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Mattsson, N. et al. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment. Brain 137, 1550–1561 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Leeuwis, A. E. et al. Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer's disease. Alzheimers Dement. 13, 531–540 (2017).

    Article  PubMed  Google Scholar 

  105. Marnane, M. & Hsiung, G. Y. Could better phenotyping small vessel disease provide new insights into Alzheimer disease and improve clinical trial outcomes? Curr. Alzheimer Res. 13, 750–763 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Kester, M. I. et al. Associations between cerebral small-vessel disease and Alzheimer disease pathology as measured by cerebrospinal fluid biomarkers. JAMA Neurol. 71, 855–862 (2014).

    Article  PubMed  Google Scholar 

  107. Mackic, J. B. et al. Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer's amyloid-β peptide in aged squirrel monkey with cerebral amyloid angiopathy. J. Neurochem. 70, 210–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, Y. R. et al. Associations between hepatic functions and plasma amyloid-β levels.— implications for the capacity of liver in peripheral amyloid-β clearance. Mol. Neurobiol. 54, 2338–2344 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Sehgal, N. et al. Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl Acad. Sci. USA 109, 3510–3515 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Ghersi-Egea, J. F. et al. Fate of cerebrospinal fluid-borne amyloid β-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J. Neurochem. 67, 880–883 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Arvanitakis, Z., Lucas, J. A., Younkin, L. H., Younkin, S. G. & Graff-Radford, N. R. Serum creatinine levels correlate with plasma amyloid β protein. Alzheimer Dis. Assoc. Disord. 16, 187–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, Y. H. et al. Association between serum amyloid-β and renal functions: implications for roles of kidney in amyloid-β clearance. Mol. Neurobiol. 52, 115–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Gronewold, J. et al. Factors responsible for plasma β-amyloid accumulation in chronic kidney disease. Mol. Neurobiol. 53, 3136–3145 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Deckers, K. et al. Dementia risk in renal dysfunction: a systematic review and meta-analysis of prospective studies. Neurology 88, 198–208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sakai, K. et al. Patients that have undergone hemodialysis exhibit lower amyloid deposition in the brain: evidence supporting a therapeutic strategy for Alzheimer's disease by removal of blood amyloid. J. Alzheimers Dis. 51, 997–1002 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Emamian, F. et al. The association between obstructive sleep apnea and Alzheimer's disease: a meta-analysis perspective. Front. Aging Neurosci. 8, 78 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Brunnstrom, H. R. & Englund, E. M. Cause of death in patients with dementia disorders. Eur. J. Neurol. 16, 488–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Pan, W. & Kastin, A. J. Can sleep apnea cause Alzheimer's disease? Neurosci. Biobehav. Rev. 47, 656–669 (2014).

    Article  PubMed  Google Scholar 

  119. Yaffe, K. et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 306, 613–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Osorio, R. S. et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84, 1964–1971 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bu, X. L. et al. Serum amyloid-β levels are increased in patients with obstructive sleep apnea syndrome. Sci. Rep. 5, 13917 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bu, X. L. et al. Serum amyloid-β levels are increased in patients with chronic obstructive pulmonary disease. Neurotox. Res. 28, 346–351 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Osorio, R. S. et al. Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly individuals. Neurobiol. Aging 35, 1318–1324 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Rosenzweig, I. et al. Sleep apnoea and the brain: a complex relationship. Lancet Respir. Med. 3, 404–414 (2015).

    Article  PubMed  Google Scholar 

  125. Musiek, E. S. & Holtzman, D. M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354, 1004–1008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cedernaes, J. et al. Candidate mechanisms underlying the association between sleep–wake disruptions and Alzheimer's disease. Sleep Med. Rev. 31, 102–111 (2017).

    Article  PubMed  Google Scholar 

  127. Gareau, M. Microbiota–gut–brain axis and cognitive function. Adv. Exp. Med. Biol. 817, 357–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Zhan, X. et al. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 87, 2324–2332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Akbari, E. et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8, 256 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bu, X. L. et al. A study on the association between infectious burden and Alzheimer's disease. Eur. J. Neurol. 22, 1519–1525 (2015). This study offers the first evidence that an increased infectious burden is associated with AD, supporting the role of systemic infection and/or inflammation in the aetiopathogenesis of AD.

    Article  PubMed  Google Scholar 

  131. Harris, S. A. & Harris, E. A. Herpes simplex virus type 1 and other pathogens are key causative factors in sporadic Alzheimer's disease. J. Alzheimers Dis. 48, 319–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abbayya, K., Puthanakar, N. Y., Naduwinmani, S. & Chidambar, Y. S. Association between periodontitis and Alzheimer's disease. N. Am. J. Med. Sci. 7, 241–246 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wallin, K. et al. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: a population-based study. J. Alzheimers Dis. 31, 669–676 (2012).

    Article  PubMed  Google Scholar 

  134. Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Gao, H. M. & Hong, J. S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 29, 357–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, J. et al. Anti-inflammatory drugs and risk of Alzheimer's disease: an updated systematic review and meta-analysis. J. Alzheimers Dis. 44, 385–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Lövheim, H. et al. Plasma concentrations of free amyloid-β cannot predict the development of Alzheimer's disease. Alzheimers Dement. 13, 778–782 (2017).

    Article  PubMed  Google Scholar 

  138. Mattsson, N. et al. Plasma tau in Alzheimer disease. Neurology 87, 1827–1835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wood, H. Alzheimer disease: biomarkers of AD risk — the end of the road for plasma amyloid-β? Nat. Rev. Neurol. 12, 613 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Herskovits, A. Z., Locascio, J. J., Peskind, E. R., Li, G. & Hyman, B. T. A. Luminex assay detects amyloid β oligomers in Alzheimer's disease cerebrospinal fluid. PLoS ONE 8, e67898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sengupta, U. et al. Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Ann. Clin. Transl Neurol. 4, 226–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shen, Y. et al. Increased plasma β-secretase 1 may predict conversion to Alzheimer's disease dementia in individuals with mild cognitive impairment. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2017.02.007 (2017).

  143. Brooks, M. One target, one treatment? Not for Alzheimer's disease. Medscape http://www.medscape.com/viewarticle/848322 (2015).

  144. Wang, Y. J. Alzheimer disease: lessons from immunotherapy for Alzheimer disease. Nat. Rev. Neurol. 10, 188–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Larson, E. B., Yaffe, K. & Langa, K. M. New insights into the dementia epidemic. N. Engl. J. Med. 369, 2275–2277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wu, Y. T. et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurol. 15, 116–124 (2016).

    Article  PubMed  Google Scholar 

  147. Satizabal, C. L. et al. Incidence of dementia over three decades in the Framingham heart study. N. Engl. J. Med. 374, 523–532 (2016). This study finds that the incidence of dementia has decreased over the past three decades, suggesting that control of systemic comorbidities and risk factors, as well as maintenance of body homeostasis, could bring improved results for AD prevention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Langa, K. M. et al. A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Intern. Med. 177, 51–58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Haag, M. D., Hofman, A., Koudstaal, P. J., Stricker, B. H. & Breteler, M. M. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J. Neurol. Neurosurg. Psychiatry 80, 13–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Papadopoulos, P., Tong, X. K. & Hamel, E. Selective benefits of simvastatin in bitransgenic APPSwe, Ind/TGF-β1 mice. Neurobiol. Aging 35, 203–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Richardson, K. et al. Statins and cognitive function: a systematic review. Ann. Intern. Med. 159, 688–697 (2013).

    Article  PubMed  Google Scholar 

  152. Ancoli-Israel, S. et al. Cognitive effects of treating obstructive sleep apnea in Alzheimer's disease: a randomized controlled study. J. Am. Geriatr. Soc. 56, 2076–2081 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Cooke, J. R. et al. Sustained use of CPAP slows deterioration of cognition, sleep, and mood in patients with Alzheimer's disease and obstructive sleep apnea: a preliminary study. J. Clin. Sleep Med. 5, 305–309 (2009).

    PubMed  PubMed Central  Google Scholar 

  154. Boada, M. et al. Amyloid-targeted therapeutics in Alzheimer's disease: use of human albumin in plasma exchange as a novel approach for Aβ mobilization. Drug News Perspect. 22, 325–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Jin, W. S. et al. Peritoneal dialysis reduces amyloid-β plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model. Acta Neuropathol. 134, 207–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Liu, Y. et al. Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease. Mol. Ther. 17, 1381–1386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y. H. et al. Clearance of amyloid-β in Alzheimer's disease: shifting the action site from center to periphery. Mol. Neurobiol. 51, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Winston, C. N. et al. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement. (Amst.) 3, 63–72 (2016).

    Google Scholar 

  159. Goetzl, E. J. et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. FASEB J. 30, 3853–3859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Veitinger, M. et al. A platelet protein biochip rapidly detects an Alzheimer's disease-specific phenotype. Acta Neuropathol. 128, 665–677 (2014). This article demonstrates platelet changes in AD, providing potential biomarkers for early diagnosis of AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Burnham, S. C. et al. A blood-based predictor for neocortical Aβ burden in Alzheimer's disease: results from the AIBL study. Mol. Psychiatry 19, 519–526 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Mattsson, N., Andreasson, U., Zetterberg, H., Blennow, K. & Alzheimer's Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 74, 557–566 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chaves, M. L. et al. Serum levels of S100B and NSE proteins in Alzheimer's disease patients. J. Neuroinflammation 7, 6 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Teunissen, C. E. et al. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur. J. Neurol. 18, 865–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, R. et al. Systemic immune system alterations in early stages of Alzheimer's disease. J. Neuroimmunol. 256, 38–42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kayano, M. et al. Plasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysis. Biomark. Res. 4, 22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lu, R. et al. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer's disease and mild cognitive impairment. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2017.136 (2017).

  168. Roberts, B. R. et al. Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET. Brain 140, 1486–1498 (2017).

    Article  PubMed  Google Scholar 

  169. Bush, A. I. et al. The amyloid precursor protein of Alzheimer's disease is released by human platelets. J. Biol. Chem. 265, 15977–15983 (1990).

    CAS  PubMed  Google Scholar 

  170. Li, Q. X. et al. Secretion of Alzheimer's disease Aβ amyloid peptide by activated human platelets. Lab. Invest. 78, 461–469 (1998).

    CAS  PubMed  Google Scholar 

  171. Citron, M. et al. Excessive production of amyloid β-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Natl Acad. Sci. USA 91, 11993–11997 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Li, S., Liu, B., Zhang, L. & Rong, L. Amyloid β peptide is elevated in osteoporotic bone tissues and enhances osteoclast function. Bone 61, 164–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Kuo, Y. M. et al. Elevated Aβ42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AβPP metabolism. Am. J. Pathol. 156, 797–805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, X. et al. Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 expression and β-amyloid generation. J. Biol. Chem. 282, 10873–10880 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Sun, X. et al. Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl Acad. Sci. USA 103, 18727–18732 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by the National Natural Science Foundation of China (grants 81471296 and 81625007 to Y.-J.W., and grant 81600949 to J.W.), and the Chinese Ministry of Science and Technology (grant 2016YFC1306401 to Y.-J.W.). The authors thank Dr J. Piña-Crespo and Dr H. Xu at Sanford Burnham Prebys Medical Discovery Institute, USA, for critical reading of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Colin L. Masters or Yan-Jiang Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gu, B., Masters, C. et al. A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13, 612–623 (2017). https://doi.org/10.1038/nrneurol.2017.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing