Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders

Key Points

  • The neurovascular unit comprises vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)), glial cells (astrocytes, microglia and oliogodendroglia) and neurons.

  • Neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS) are associated with microvascular dysfunction and/or degeneration in the brain, neurovascular disintegration, defective blood–brain barrier (BBB) function and/or vascular factors.

  • The interactions between endothelial cells and pericytes are crucial for the formation and maintenance of the BBB. Indeed, pericyte deficiency leads to BBB breakdown and extravasation of multiple vasculotoxic and neurotoxic circulating macromolecules, which can contribute to neuronal dysfunction, cognitive decline and neurodegenerative changes.

  • Alterations in cerebrovascular metabolic functions can also lead to the secretion of multiple neurotoxic and inflammatory factors.

  • BBB dysfunction and/or breakdown and cerebral blood flow (CBF) reductions and/or dysregulation may occur in sporadic Alzheimer's disease and experimental models of this disease before cognitive decline, amyloid-β deposition and brain atrophy. In patients with ALS and in some experimental models of ALS, CBF dysregulation, blood–spinal cord barrier breakdown and spinal cord hypoperfusion have been reported prior to motor neuron cell death.

  • Several studies in animal models of Alzheimer's disease and, more recently, in patients with this disorder have shown diminished amyloid-β clearance from brain tissue. The recognition of amyloid-β clearance pathways opens exciting new therapeutic opportunities for this disease.

  • 'Multiple-target, multiple-action' agents will stand a better chance of controlling the complex disease mechanisms that mediate neurodegeneration in disorders such as Alzheimer's disease than will agents that have only one target. According to the vasculo-neuronal-inflammatory triad model of neurodegenerative disorders, in addition to neurons, brain endothelium, VSMCs, pericytes, astrocytes and activated microglia all represent important therapeutic targets.

Abstract

The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood–brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cerebral microcirculation and the neurovascular unit.
Figure 2: Blood–brain barrier transport mechanisms.
Figure 3: Vascular-mediated neuronal damage and neurodegeneration.
Figure 4: The role of blood–brain barrier transport in brain homeostasis of amyloid-β.
Figure 5: A model of vascular damage in Alzheimer's disease.

Similar content being viewed by others

References

  1. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010). A comprehensive review describing mechanisms of ischaemic injury to the neurovascular unit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zlokovic, B. V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, W. R. & Thore, C. R. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37, 56–74 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, Z. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nature Med. 11, 959–965 (2005). A study demonstrating that low expression of MEOX2 in brain endothelium leads to aberrant angiogenesis and vascular regression in Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  6. Paul, J., Strickland, S. & Melchor, J. P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J. Exp. Med. 204, 1999–2008 (2007). A study showing BBB breakdown in models of Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zipser, B. D. et al. Microvascular injury and blood–brain barrier leakage in Alzheimer's disease. Neurobiol. Aging 28, 977–986 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neurosci. 11, 420–422 (2008). A study demonstrating that BSCB defects precede motor neuron degeneration in mice that develop an ALS-like disease.

    Article  CAS  PubMed  Google Scholar 

  9. Kalaria, R. N. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr. Rev. 68, S74–S87 (2010).

    Article  PubMed  Google Scholar 

  10. Knopman, D. S. & Roberts, R. Vascular risk factors: imaging and neuropathologic correlates. J. Alzheimers Dis. 20, 699–709 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miyazaki, K. et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res. 89, 718–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Neuwelt, E. A. et al. Engaging neuroscience to advance translational research in brain barrier biology. Nature Rev. Neurosci. 12, 169–182 (2011).

    Article  CAS  Google Scholar 

  13. Guo, S. & Lo, E. H. Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40, S4–S7 (2009).

    Article  PubMed  Google Scholar 

  14. Redzic, Z. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. O'Kane, R. L., Martinez-Lopez, I., DeJoseph, M. R., Vina, J. R. & Hawkins, R. A. Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood–brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274, 31891–31895 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Hardingham, G. E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 37, 1147–1160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elali, A. & Hermann, D. M. ATP-binding cassette transporters and their roles in protecting the brain. Neuroscientist 17, 423–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Visser, W. E., Friesema, E. C. & Visser, T. J. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zlokovic, B. V., Begley, D. J. & Chain-Eliash, D. G. Blood–brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 336, 125–132 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Zlokovic, B. V., Lipovac, M. N., Begley, D. J., Davson, H. & Rakic, L. Transport of leucine-enkephalin across the blood–brain barrier in the perfused guinea pig brain. J. Neurochem. 49, 310–315 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Zlokovic, B. V., Mackic, J. B., Djuricic, B. & Davson, H. Kinetic analysis of leucine–enkephalin cellular uptake at the luminal side of the blood–brain barrier of an in situ perfused guinea-pig brain. J. Neurochem. 53, 1333–1340 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Zlokovic, B. V. et al. Kinetics of arginine-vasopressin uptake at the blood–brain barrier. Biochim. Biophys. Acta 1025, 191–198 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Zlokovic, B. V., Segal, M. B., Begley, D. J., Davson, H. & Rakic, L. Permeability of the blood–cerebrospinal fluid and blood–brain barriers to thyrotropin-releasing hormone. Brain Res. 358, 191–199 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Dogrukol-Ak, D. et al. Isolation of peptide transport system-6 from brain endothelial cells: therapeutic effects with antisense inhibition in Alzheimer and stroke models. J. Cereb. Blood Flow Metab. 29, 411–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Pardridge, W. M. Blood–brain barrier delivery. Drug Discov. Today 12, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Nishijima, T. et al. Neuronal activity drives localized blood–brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67, 834–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Banks, W. A. Blood–brain barrier as a regulatory interface. Forum Nutr. 63, 102–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Deane, R. et al. Endothelial protein C receptor-assisted transport of activated protein C across the mouse blood–brain barrier. J. Cereb. Blood Flow Metab. 29, 25–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Iadecola, C. Astrocytes take center stage in salt sensing. Neuron 54, 3–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Shimizu, H. et al. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54, 59–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Henkel, J. S., Beers, D. R., Wen, S., Bowser, R. & Appel, S. H. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72, 1614–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Alvarez, J. I., Cayrol, R. & Prat, A. Disruption of central nervous system barriers in multiple sclerosis. Biochim. Biophys. Acta 1812, 252–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010). A study showing that loss of pericytes leads to BBB breakdown and hypoperfusion, resulting in secondary neurodegenerative changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenberg, G. A. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 8, 205–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Cheng, T. et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nature Med. 12, 1278–1285 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010). A study showing that pericytes control the formation of the BBB during embryonic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, F. et al. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell 20, 291–302 (2011). A study showing that N-cadherin mediates pericyte–endothelial attachment in the cerebral blood vessels, preventing microhaemorrhages.

    Article  CAS  PubMed  Google Scholar 

  38. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010). A study that reveals a role for pericytes in the maintenance of the BBB in vivo during adulthood.

    Article  CAS  PubMed  Google Scholar 

  39. Broadwell, R. D. & Salcman, M. Expanding the definition of the blood–brain barrier to protein. Proc. Natl Acad. Sci. USA 78, 7820–7824 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mhatre, M. et al. Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol. Aging 25, 783–793 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, B., Cheng, Q., Yang, K. & Lyden, P. D. Thrombin mediates severe neurovascular injury during ischemia. Stroke 41, 2348–2352 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Z. L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Zhong, Z. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J. Clin. Invest. 119, 3437–3449 (2009). A study showing that APC prevents BSCB breakdown, suppresses activation of microglia and protects motor neurons in ALS mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Simard, J. M., Kent, T. A., Chen, M., Tarasov, K. V. & Gerzanich, V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 6, 258–268 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoshi, A., Yamamoto, T., Shimizu, K., Sugiura, Y. & Ugawa, Y. Chemical preconditioning-induced reactive astrocytosis contributes to the reduction of post-ischemic edema through aquaporin-4 downregulation. Exp. Neurol. 227, 89–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  47. Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006). A study showing that pericytes control the diameter of brain capillaries in response to signals from neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T. & Bacskai, B. J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takano, T., Han, X., Deane, R., Zlokovic, B. & Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann. NY Acad. Sci. 1097, 40–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, C. D. et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology 53, 1391–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Bookheimer, S. Y. et al. Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343, 450–456 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruitenberg, A. et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann. Neurol. 57, 789–794 (2005).

    Article  PubMed  Google Scholar 

  54. Sheline, Y. I. et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J. Neurosci. 30, 17035–17040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, X. et al. Cerebrovascular hypoperfusion induces spatial memory impairment, synaptic changes, and amyloid-β oligomerization in rats. J. Alzheimers Dis. 21, 813–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002). A study showing that amyloid-β oligomers inhibit neuronal activity in the hipocampus.

    Article  CAS  PubMed  Google Scholar 

  57. Koike, M. A., Green, K. N., Blurton-Jones, M. & Laferla, F. M. Oligemic hypoperfusion differentially affects tau and amyloid-β. Am. J. Pathol. 177, 300–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gordon-Krajcer, W., Kozniewska, E., Lazarewicz, J. W. & Ksiezak-Reding, H. Differential changes in phosphorylation of tau at PHF-1 and 12E8 epitopes during brain ischemia and reperfusion in gerbils. Neurochem. Res. 32, 729–737 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Ongali, B. et al. Transgenic mice overexpressing APP and transforming growth factor-β1 feature cognitive and vascular hallmarks of Alzheimer's disease. Am. J. Pathol. 177, 3071–3080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun, X. et al. Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl Acad. Sci. USA 103, 18727–18732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, X. et al. Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 expression and β-amyloid generation. J. Biol. Chem. 282, 10873–10880 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Guglielmotto, M. et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. J. Neurochem. 108, 1045–1056 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Li, L. et al. Hypoxia increases Aβ generation by altering β- and γ-cleavage of APP. Neurobiol. Aging 30, 1091–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Fang, H., Zhang, L. F., Meng, F. T., Du, X. & Zhou, J. N. Acute hypoxia promote the phosphorylation of tau via ERK pathway. Neurosci. Lett. 474, 173–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Z. et al. Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS ONE 6, e19229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bell, R. D. et al. SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nature Cell Biol. 11, 143–153 (2009). A study showing that hypoxia leads to a failure of LRP1-mediated amyloid-β clearance from brain arteries through an elevation in the levels of myocardin and serum response factor.

    Article  CAS  PubMed  Google Scholar 

  67. Munch, C. et al. Chemical hypoxia facilitates alternative splicing of EAAT2 in presymptomatic APP23 transgenic mice. Neurochem. Res. 33, 1005–1010 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Boycott, H. E., Dallas, M., Boyle, J. P., Pearson, H. A. & Peers, C. Hypoxia suppresses astrocyte glutamate transport independently of amyloid formation. Biochem. Biophys. Res. Commun. 364, 100–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Carvalho, C. et al. Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia. J. Bioenerg. Biomembr. 41, 433–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandez-Checa, J. C. et al. Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol. Disord. Drug Targets 9, 439–454 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Correia, S. C. et al. Mitochondria: the missing link between preconditioning and neuroprotection. J. Alzheimers Dis. 20, S475–S485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grammas, P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J. Neuroinflammation 8, 26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grammas, P., Moore, P. & Weigel, P. H. Microvessels from Alzheimer's disease brains kill neurons in vitro. Am. J. Pathol. 154, 337–342 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moser, K. V., Stockl, P. & Humpel, C. Cholinergic neurons degenerate when exposed to conditioned medium of primary rat brain capillary endothelial cells: counteraction by NGF, MK-801 and inflammation. Exp. Gerontol. 41, 609–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Yin, X., Wright, J., Wall, T. & Grammas, P. Brain endothelial cells synthesize neurotoxic thrombin in Alzheimer's disease. Am. J. Pathol. 176, 1600–1606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin, A. J., Friston, K. J., Colebatch, J. G. & Frackowiak, R. S. Decreases in regional cerebral blood flow with normal aging. J. Cereb. Blood Flow Metab. 11, 684–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Li, B. & Freeman, R. D. Neurometabolic coupling in the lateral geniculate nucleus changes with extended age. J. Neurophysiol. 104, 414–425 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genet. 39, 17–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Verghese, P. B., Castellano, J. M. & Holtzman, D. M. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol. 10, 241–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A. & Resnick, S. M. APOE ɛ4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Farrall, A. J. & Wardlaw, J. M. Blood–brain barrier: ageing and microvascular disease — systematic review and meta-analysis. Neurobiol. Aging 30, 337–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Topakian, R., Barrick, T. R., Howe, F. A. & Markus, H. S. Blood–brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J. Neurol. Neurosurg. Psychiatry 81, 192–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, R. L. et al. Age-related changes in choroid plexus and blood–cerebrospinal fluid barrier function in the sheep. Exp. Gerontol. 44, 289–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Farkas, E. & Luiten, P. G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Savva, G. M. et al. Age, neuropathology, and dementia. N. Engl. J. Med. 360, 2302–2309 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Jellinger, K. A. Prevalence and impact of cerebrovascular lesions in Alzheimer and lewy body diseases. Neurodegener. Dis. 7, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Cordonnier, C. Brain microbleeds: more evidence, but still a clinical dilemma. Curr. Opin. Neurol. 24, 69–74 (2011).

    Article  PubMed  Google Scholar 

  90. Viswanathan, A. & Greenberg, S. M. Cerebral amyloid angiopathy (CAA) in the elderly. Ann. Neurol. 10 Jun 2011 (doi:10.1002/ana.22516).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fossati, S. et al. Differential activation of mitochondrial apoptotic pathways by vasculotropic amyloid-β variants in cells composing the cerebral vessel walls. FASEB J. 24, 229–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Engelhardt, J. I. & Appel, S. H. IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch. Neurol. 47, 1210–1216 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Garbuzova-Davis, S. et al. Evidence of compromised blood–spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2, e1205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garbuzova-Davis, S. et al. Amyotrophic lateral sclerosis: a neurovascular disease. Brain Res. 1398, 113–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Zhao, C., Ling, Z., Newman, M. B., Bhatia, A. & Carvey, P. M. TNF-α knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol. Dis. 26, 36–46 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, X., Lan, X., Roche, I., Liu, R. & Geiger, J. D. Caffeine protects against MPTP-induced blood–brain barrier dysfunction in mouse striatum. J. Neurochem. 107, 1147–1157 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chao, Y. X., He, B. P. & Tay, S. S. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease. J. Neuroimmunol. 216, 39–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Elbaz, A. & Moisan, F. Update in the epidemiology of Parkinson's disease. Curr. Opin. Neurol. 21, 454–460 (2008).

    Article  PubMed  Google Scholar 

  100. Bertrand, E. et al. Amyloid angiopathy in idiopathic Parkinson's disease. Immunohistochemical and ultrastructural study. Folia Neuropathol. 46, 255–270 (2008).

    PubMed  Google Scholar 

  101. Benamer, H. T. & Grosset, D. G. Vascular parkinsonism: a clinical review. Eur. Neurol. 61, 11–15 (2009).

    Article  PubMed  Google Scholar 

  102. Duran-Vilaregut, J. et al. Blood–brain barrier disruption in the striatum of rats treated with 3-nitropropionic acid. Neurotoxicology 30, 136–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Mooradian, A. D., Chung, H. C. & Shah, G. N. GLUT-1 expression in the cerebra of patients with Alzheimer's disease. Neurobiol. Aging 18, 469–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Hunt, A. et al. Reduced cerebral glucose metabolism in patients at risk for Alzheimer's disease. Psychiatry Res. 155, 147–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Herholz, K. Cerebral glucose metabolism in preclinical and prodromal Alzheimer's disease. Expert Rev. Neurother. 10, 1667–1673 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Mosconi, L. et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J. Nucl. Med. 47, 1778–1786 (2006).

    CAS  PubMed  Google Scholar 

  107. Samuraki, M. et al. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 34, 1658–1669 (2007).

    Article  PubMed  Google Scholar 

  108. Mosconi, L. et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol. Aging 29, 676–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Thomas, T., Thomas, G., McLendon, C., Sutton, T. & Mullan, M. β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171 (1996). A study showing that amyloid-β constricts blood vessels.

    Article  CAS  PubMed  Google Scholar 

  110. Iadecola, C. et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nature Neurosci. 2, 157–161 (1999). A study showing that dysregulation in CBF occurs before amyloid-β deposition in a mouse model of Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  111. Niwa, K. et al. Aβ1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc. Natl Acad. Sci. USA 97, 9735–9740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Park, L. et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-β. Proc. Natl Acad. Sci. USA 108, 5063–5068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chow, N. et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc. Natl Acad. Sci. USA 104, 823–828 (2007). A study showing that elevated levels of myocardin and serum response factor lead to a hypercontractile phenotype of brain arteries in Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bartels, A. L. et al. Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol. Aging 30, 1818–1824 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Bartels, A. L. et al. Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA. J. Neural Transm. 115, 1001–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Rule, R. R., Schuff, N., Miller, R. G. & Weiner, M. W. Gray matter perfusion correlates with disease severity in ALS. Neurology 74, 821–827 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Harris, G. J. et al. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 122, 1667–1678 (1999).

    Article  PubMed  Google Scholar 

  118. Deckel, A. W. & Duffy, J. D. Vasomotor hyporeactivity in the anterior cerebral artery during motor activation in Huntington's disease patients. Brain Res. 872, 258–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Greenberg, D. A. & Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M. & Carmeliet, P. Role and therapeutic potential of VEGF in the nervous system. Physiol. Rev. 89, 607–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Zacchigna, S., Lambrechts, D. & Carmeliet, P. Neurovascular signalling defects in neurodegeneration. Nature Rev. Neurosci. 9, 169–181 (2008).

    Article  CAS  Google Scholar 

  122. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Paris, D. et al. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci. Lett. 366, 80–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M. G. Cadasil. Lancet Neurol. 8, 643–653 (2009).

    Article  PubMed  Google Scholar 

  125. Rotstein, M. et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann. Neurol. 68, 955–958 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang, D. et al. A mouse model for Glut-1 haploinsufficiency. Hum. Mol. Genet. 15, 1169–1179 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Eisele, Y. S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010). A study showing that peripheral amyloid-β contributes to the development of cerebral β-amyloidosis in a mouse model of Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sutcliffe, J. G., Hedlund, P. B., Thomas, E. A., Bloom, F. E. & Hilbush, B. S. Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: implications for Alzheimer's disease. J. Neurosci. Res. 89, 808–814 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Sagare, A. P., Winkler, E. A., Bell, R. D., Deane, R. & Zlokovic, B. V. From the liver to the blood–brain barrier: an interconnected system regulating brain amyloid-β levels. J. Neurosci. Res. 89, 967–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Ujiie, M., Dickstein, D. L., Carlow, D. A. & Jefferies, W. A. Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10, 463–470 (2003).

    CAS  PubMed  Google Scholar 

  131. Mackic, J. B. et al. Circulating amyloid-β peptide crosses the blood–brain barrier in aged monkeys and contributes to Alzheimer's disease lesions. Vascul. Pharmacol. 38, 303–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Mackic, J. B. et al. Cerebrovascular accumulation and increased blood–brain barrier permeability to circulating Alzheimer's amyloid β peptide in aged squirrel monkey with cerebral amyloid angiopathy. J. Neurochem. 70, 210–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Poduslo, J. F., Curran, G. L., Haggard, J. J., Biere, A. L. & Selkoe, D. J. Permeability and residual plasma volume of human, Dutch variant, and rat amyloid β-protein 1–40 at the blood–brain barrier. Neurobiol. Dis. 4, 27–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Ghilardi, J. R. et al. Intra-arterial infusion of 125IAβ 1–40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport 7, 2607–2611 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Zlokovic, B. V. et al. Blood–brain barrier transport of circulating Alzheimer's amyloid β. Biochem. Biophys. Res. Commun. 197, 1034–1040 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Martel, C. L., Mackic, J. B., McComb, J. G., Ghiso, J. & Zlokovic, B. V. Blood–brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer's amyloid β in guinea pigs. Neurosci. Lett. 206, 157–160 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Sagare, A. et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nature Med. 13, 1029–1031 (2007). A study showing that soluble LRP1 binds amyloid-β in the cirulation, preventing re-entry of this peptide into the brain.

    Article  CAS  PubMed  Google Scholar 

  138. DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295, 2264–2267 (2002). A study showing that a circulating anti-amyloid-β antibody promotes efflux of this peptide from brain to blood.

    Article  CAS  PubMed  Google Scholar 

  139. Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B. & Wisniewski, T. Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol. 159, 439–447 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. DeMattos, R. B. et al. Plaque-associated disruption of CSF and plasma amyloid-β (Aβ) equilibrium in a mouse model of Alzheimer's disease. J. Neurochem. 81, 229–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Matsuoka, Y. et al. Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to β-amyloid. J. Neurosci. 23, 29–33 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, Y. et al. Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease. Mol. Ther. 17, 1381–1386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, Y. et al. Circulating neprilysin clears brain amyloid. Mol. Cell. Neurosci. 45, 101–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nature Med. 9, 907–913 (2003). A study showing that RAGE mediates the influx of amyloid-β into the brain across the BBB.

    Article  CAS  PubMed  Google Scholar 

  145. Mackic, J. B. et al. Human blood–brain barrier receptors for Alzheimer's amyloid-β 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102, 734–743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Giri, R. et al. β-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am. J. Physiol. Cell Physiol. 279, C1772–C1781 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–691 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Yan, S. F., Ramasamy, R. & Schmidt, A. M. The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ. Res. 106, 842–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mawuenyega, K. G. et al. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330, 1774 (2010). An important study demonstrating faulty amyloid-β clearance from the brain in patients with Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zlokovic, B. V., Deane, R., Sagare, A. P., Bell, R. D. & Winkler, E. A. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J. Neurochem. 115, 1077–1089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Deane, R. et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43, 333–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Shibata, M. et al. Clearance of Alzheimer's amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest. 106, 1489–1499 (2000). A pioneering study showing that LRP1 medaites amyloid-β clearance from the brain to the blood across the BBB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bell, R. D. et al. Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Jaeger, L. B. et al. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J. Alzheimers Dis. 17, 553–570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shinohara, M. et al. Reduction of brain β-amyloid (Aβ) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Aβ clearance. J. Biol. Chem. 285, 22091–22102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jaeger, L. B. et al. Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav. Immun. 23, 507–517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yamada, K. et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid β peptides in an in vitro model of the blood-brain barrier cells. J. Biol. Chem. 283, 34554–34562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nazer, B., Hong, S. & Selkoe, D. J. LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-β peptide in a blood–brain barrier in vitro model. Neurobiol. Dis. 30, 94–102 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Monro, O. R. et al. Substitution at codon 22 reduces clearance of Alzheimer's amyloid-β peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol. Aging 23, 405–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Davis, J. et al. Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β-protein precursor. J. Biol. Chem. 279, 20296–20306 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Deane, R. et al. apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. DeMattos, R. B. et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41, 193–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. DeMattos, R. B. et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 99, 10843–10848 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bading, J. R. et al. Brain clearance of Alzheimer's amyloid-β40 in the squirrel monkey: a SPECT study in a primate model of cerebral amyloid angiopathy. J. Drug Target. 10, 359–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Donahue, J. E. et al. RAGE, LRP-1, and amyloid-β protein in Alzheimer's disease. Acta Neuropathol. 112, 405–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Cirrito, J. R. et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J. Clin. Invest. 115, 3285–3290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Owen, J. B. et al. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Aβ accumulation in AD brain. Free Radic. Biol. Med. 49, 1798–1803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Behl, M. et al. Lead-induced accumulation of β-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31, 524–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sagare, A. P. et al. Impaired lipoprotein receptor-mediated peripheral binding of plasma amyloid-β is an early biomarker for mild cognitive impairment preceding Alzheimer's disease. J. Alzheimers Dis. 24, 25–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tamaki, C. et al. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide by the liver. Pharm. Res. 23, 1407–1416 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Iwata, N. et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Qiu, W. Q. & Folstein, M. F. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer's disease: review and hypothesis. Neurobiol. Aging 27, 190–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Melchor, J. P., Pawlak, R. & Strickland, S. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-β (Aβ) degradation and inhibits Aβ-induced neurodegeneration. J. Neurosci. 23, 8867–8871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yin, K. J. et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J. Neurosci. 26, 10939–10948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med. 10, 719–726 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Bacskai, B. J. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J. Neurosci. 22, 7873–7878 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28, 8354–8360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. & Carare, R. O. Perivascular drainage of amyloid-β peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol. 18, 253–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Brody, D. L. et al. Amyloid-β dynamics correlate with neurological status in the injured human brain. Science 321, 1221–1224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. N.Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Hardy, J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J. Neurochem. 110, 1129–1134 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Lagier-Tourenne, C. & Cleveland, D. W. Neurodegeneration: an expansion in ALS genetics. Nature 466, 1052–1053 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gruzman, A. et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 104, 12524–12529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006). A study demonstrating that the toxicity conferred by an ALS-linked SOD1 mutant to microglia determines the lifespan of mice with an ALS-like disease.

    Article  CAS  PubMed  Google Scholar 

  187. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci. 11, 251–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Beers, D. R. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 103, 16021–16026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nature Neurosci. 10, 608–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neurosci. 10, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet. 34, 383–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Greenway, M. J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nature Genet. 38, 411–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Zlokovic, B. V. & Griffin, J. H. Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends Neurosci. 34, 198–209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Storkebaum, E. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neurosci. 8, 85–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Azzouz, M. et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429, 413–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. US National Institutes of Health. A safety and tolerability study of intracerebroventricular administration of sNN0029 to patients with amyotrophic lateral sclerosis. ClinicalTrials.gov [online], (2011).

  199. Kieran, D. et al. Control of motoneuron survival by angiogenin. J. Neurosci. 28, 14056–14061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lopez-Lopez, C., Dietrich, M. O., Metzger, F., Loetscher, H. & Torres-Aleman, I. Disturbed cross talk between insulin-like growth factor I and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer's disease. J. Neurosci. 27, 824–831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Spuch, C. et al. The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease. Biomaterials 31, 5608–5618 (2010).

    Article  CAS  PubMed  Google Scholar 

  202. Jucker, M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nature Med. 16, 1210–1214 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Lo, E. H. Degeneration and repair in central nervous system disease. Nature Med. 16, 1205–1209 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Van Broeckhoven, C. The future of genetic research on neurodegeneration. Nature Med. 16, 1215–1217 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. de la Torre, J. C. Vascular risk factor detection and control may prevent Alzheimer's disease. Ageing Res. Rev. 9, 218–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Luchsinger, J. A. et al. Relation of diabetes to mild cognitive impairment. Arch. Neurol. 64, 570–575 (2007).

    Article  PubMed  Google Scholar 

  207. Iadecola, C. & Davisson, R. L. Hypertension and cerebrovascular dysfunction. Cell Metab. 7, 476–484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Whitmer, R. A. et al. Central obesity and increased risk of dementia more than three decades later. Neurology 71, 1057–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Marchesi, V. T. Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 25, 5–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Vermeer, S. E. et al. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222 (2003).

    Article  PubMed  Google Scholar 

  211. Snowdon, D. A. et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813–817 (1997).

    Article  CAS  PubMed  Google Scholar 

  212. Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the US National Institutes of Health (grants R37 AG023084, R37 NS34467 and HL63290), the ALS Association (grant 1859) and the Zilkha family for research support. The author also wishes to thank A. Sagare for preparing the illustrations and for valuable help with the reference list.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Berislav V. Zlokovic is the scientific founder of Socratech LLC, a start-up biotechnology company with a mission to develop new therapeutic approaches for stroke and Alzheimer's disease.

Glossary

Blood–brain barrier

(BBB). A continuous endothelial cell membrane within the neurovascular unit that regulates the entry of cells and molecules into the brain, and maintains the removal of potentially neurotoxic molecules from the brain to blood.

Cerebral β-amyloidosis

This is a key pathological feature of Alzheimer's disease and is caused by accumulation and aggregation of amyloid-β in brain parenchyma.

Cerebral amyloid angiopathy

A vessel disease that is caused by the deposition of amyloid in the vessel wall of small cerebral arteries and capillaries, and that results in cerebral blood flow dysregulation, blood–brain barrier disruption and microhaemorrhages.

Amyloid-β

A small, 4-kDa peptide that accumulates in the brains of individuals with Alzheimer's disease. It forms neurotoxic oligomers and amyloid aggregates that are deposited in the brain parenchyma and around small cerebral blood vessels.

Neurovascular unit

A complex multicellular functional unit of the CNS comprising vascular cells, glial cells and neurons that, together, ultimately determine CNS activities and responses in health and disease.

Pericytes

Mural vascular cells that share a common basement membrane with brain capillary endothelial cells at one end, and that are in direct contact with astrocytes at the other.

Protein C

An endogenous protease that in its active form — activated protein C (APC) — is a prototype of a new, neurovascular medicine that exerts multiple beneficial effects by acting on different types of non-neuronal cells within the neurovascular unit.

Low-density lipoprotein receptor-related protein 1

(LRP1). A cargo endocytic receptor mediating cellular internalization of multiple ligands as well as cell signalling in various cell types of the neurovascular unit.

Neurovascular coupling

This involves a functional change in cerebral blood flow that occurs in accordance, both temporally and spatially, with a change in neuronal activity.

Oligaemia

This is a moderate deficit in the resting cerebral blood flow that, if it persists, often leads to the chronic hypoperfusion and hypoxia in the CNS that is frequently found in the major neurodegenerative disorders before neurodegeneration.

Pinocytosis

This is the nonspecific transport of fluid-filled vesicles across the endothelial cells in capillaries of peripheral organs.

Neurovascular uncoupling

A term defining a diminished cerebral blood flow response to brain activation.

Trojan horses

In relation to the blood–brain barrier, this term is frequently used to describe the facilitated delivery into the brain of an otherwise non-transportable neuroactive therapeutic protein through the formation of a complex with another protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlokovic, B. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 12, 723–738 (2011). https://doi.org/10.1038/nrn3114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing