Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tau-mediated neurodegeneration in Alzheimer's disease and related disorders

Key Points

  • This Review summarizes our current understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease and related disorders. It is believed that tau-mediated neurodegeneration might result from a combination of a loss of normal tau function (primarily the microtubule (MT)-stabilizing function of tau) with gains of pathological functions of hyperphosphorylated tau, and the filaments formed thereof.

  • The primary function of tau is to stabilize the MTs. Under physiological conditions tau is in a tightly regulated dynamic equilibrium both on and off the MTs. This equilibrium, which is post-translationally regulated primarily by the phosphorylation state of tau, is thought to have a central role in maintaining effective axonal transport.

  • Under pathological conditions, an excessive disengagement of tau from the MTs takes place. This abnormal disengagement is likely to cause axonal transport defects. Furthermore, the increased cytosolic concentration of unbound tau renders the tau more likely to undergo misfolding and aggregation.

  • The aggregation of tau, leading to the formation of neurofibrillary tangles (NFTs), is likely to be associated with toxic gains-of-function. For example, NFTs may contribute to disease progression by further sequestering functional tau, thereby amplifying the loss of normal tau function. At the same time, relatively large NFTs may represent a direct physical obstacle to vesicles and other cargoes moving along the axons.

  • Direct causes of the pathological disengagement of tau from the MTs include tau gene mutations and an imbalance between tau kinases and phosphatases. Other pathological events, such as Aβ-mediated neurotoxicity, oxidative stress and inflammation, may also be able to initiate or contribute directly or indirectly to tau mediated neurodegeneration; however, their precise positioning in the cascade of events that leads to neuronal loss remains unclear.

  • A schematic overview of the various tau-directed therapeutic approaches currently under investigation is provided, along with an overview of the different transgenic mouse models that are available.

Abstract

Advances in our understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease (AD) and related tauopathies, which are characterized by prominent CNS accumulations of fibrillar tau inclusions, are rapidly moving this previously underexplored disease pathway to centre stage for disease-modifying drug discovery efforts. However, controversies abound concerning whether or not the deleterious effects of tau pathologies result from toxic gains-of-function by pathological tau or from critical losses of normal tau function in the disease state. This Review summarizes the most recent advances in our knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those tau-linked disease processes that drive the onset and progression of AD and related tauopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct and indirect pathological events that can contribute to tau-mediated neurodegeneration.
Figure 2: The domain structure of the tau isoforms that are expressed in the adult human brain.
Figure 3: The dynamic equilibrium of tau microtubule (MT) binding.
Figure 4: Pathological aggregation of tau.

Similar content being viewed by others

References

  1. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. & Hof, P. R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33, 95–130 (2000).

    CAS  PubMed  Google Scholar 

  2. Brandt, R., Leger, J. & Lee, G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J. Cell Biol. 131, 1327–1340 (1995).

    CAS  PubMed  Google Scholar 

  3. Maas, T., Eidenmuller, J. & Brandt, R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J. Biol. Chem. 275, 15733–15740 (2000).

    CAS  PubMed  Google Scholar 

  4. Fulga, T. A. et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nature Cell Biol. 9, 139–148 (2007).

    CAS  PubMed  Google Scholar 

  5. Lee, G. Tau and src family tyrosine kinases. Biochim. Biophys. Acta 1739, 323–330 (2005).

    CAS  PubMed  Google Scholar 

  6. Lee, G., Neve, R. L. & Kosik, K. S. The microtubule binding domain of tau protein. Neuron 2, 1615–1624 (1989).

    CAS  PubMed  Google Scholar 

  7. Binder, L. I., Frankfurter, A. & Rebhun, L. I. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101, 1371–1378 (1985).

    CAS  PubMed  Google Scholar 

  8. Hong, M. et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282, 1914–1917 (1998).

    CAS  PubMed  Google Scholar 

  9. Amos, L. A. Microtubule structure and its stabilisation. Org. Biomol. Chem. 2, 2153–2160 (2004).

    CAS  PubMed  Google Scholar 

  10. Kar, S., Fan, J., Smith, M. J., Goedert, M. & Amos, L. A. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 22, 70–77 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kar, S., Florence, G. J., Paterson, I. & Amos, L. A. Discodermolide interferes with the binding of tau protein to microtubules. FEBS Lett. 539, 34–36 (2003).

    CAS  PubMed  Google Scholar 

  12. Kampers, T., Pangalos, M., Geerts, H., Wiech, H. & Mandelkow, E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease. FEBS Lett. 451, 39–44 (1999).

    CAS  PubMed  Google Scholar 

  13. Takashima, A. et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl Acad. Sci. USA 95, 9637–9641 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuret, J. et al. Evaluating triggers and enhancers of tau fibrillization. Microsc. Res. Tech. 67, 141–155 (2005). This review provides a model to rationalize the multistep pathway to tau fibril formation, as well as experimental methods for tau fibrillization assays.

    CAS  PubMed  Google Scholar 

  15. Mazanetz, M. P. & Fischer, P. M. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Rev. Drug Discov. 6, 464–479 (2007). An up-to-date account of the role of specific kinases in tau-mediated neurodegeneration and their significance as targets for therapeutic intervention.

    CAS  Google Scholar 

  16. Arnold, C. S. et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271, 28741–28744 (1996).

    CAS  PubMed  Google Scholar 

  17. Li, X., Lu, F., Wang, J. -Z. & Gong, C. -X. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur. J. Neurosci. 23, 2078–2086 (2006).

    PubMed  Google Scholar 

  18. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C. -X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong, C. X., Liu, F., Grundke-Iqbal, I. & Iqbal, K. Post-translational modifications of tau protein in Alzheimer's disease. J. Neural Transm. 112, 813–838 (2005).

    CAS  PubMed  Google Scholar 

  20. Münch, G., Deuther-Conrad, W. & Gasic-Milenkovic, J. Glycoxidative stress creates a vicious cycle of neurodegeneration in Alzheimer's disease – a target for neuroprotective treatment strategies? J. Neural Transm. 62 (Suppl.), 303–307 (2002).

    Google Scholar 

  21. Cripps, D. et al. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem. 281, 10825–10838 (2006).

    CAS  PubMed  Google Scholar 

  22. Dorval, V. & Fraser, P. E. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. J. Biol. Chem. 281, 9919–9924 (2006).

    CAS  PubMed  Google Scholar 

  23. Dorval, V. & Fraser, P. E. SUMO on the road to neurodegeneration. Biochim. Biophys. Acta 1773, 694–706 (2007).

    CAS  PubMed  Google Scholar 

  24. Mailliot, C., Trojanowski, J. Q. & Lee, V. M. Impaired tau protein function following nitration-induced oxidative stress in vitro and in vivo. Neurobiol. Aging 23 (Suppl. 1), 415 (2002).

    Google Scholar 

  25. Johnson, G. Tau phosphorylation and proteolysis: insights and perspectives. J. Alzheimers Dis. 9, 243–250 (2006).

    CAS  PubMed  Google Scholar 

  26. Roy, S., Zhang, B., Lee, V. M. -Y. & Trojanowski, J. Q. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. 109, 5–13 (2005). Reviews the biology of axonal transport and its role in neurodegenerative disease.

    PubMed  Google Scholar 

  27. Kuret, J. et al. Pathways of tau fibrillization. Biochim. Biophys. Acta 1739, 167–178 (2005).

    CAS  PubMed  Google Scholar 

  28. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10, S10–S17 (2004).

    PubMed  Google Scholar 

  29. Galvan, M., David, J. P., Delacourte, A., Luna, J. & Mena, R. Sequence of neurofibrillary changes in aging and Alzheimer's disease: a confocal study with phospho-tau antibody, AD2. J. Alzheimers Dis. 3, 417–425 (2001).

    PubMed  Google Scholar 

  30. Maeda, S. et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry 46, 3856–3861 (2007).

    CAS  PubMed  Google Scholar 

  31. Maeda, S. et al. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease. Neurosci. Res. 54, 197–201 (2006).

    CAS  PubMed  Google Scholar 

  32. Goedert, M. & Jakes, R. Mutations causing neurodegenerative tauopathies. Biochim. Biophys. Acta 1739, 240–250 (2005).

    CAS  PubMed  Google Scholar 

  33. von Bergen, M. et al. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J. Biol. Chem. 276, 48165–48174 (2001).

    CAS  PubMed  Google Scholar 

  34. Nacharaju, P. et al. Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett. 447, 195–199 (1999).

    CAS  PubMed  Google Scholar 

  35. Alonso Adel, C., Mederlyova, A., Novak, M., Grundke-Iqbal, I. & Iqbal, K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279, 34873–34881 (2004).

    PubMed  Google Scholar 

  36. Dayanandan, R. et al. Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett. 446, 228–232 (1999).

    CAS  PubMed  Google Scholar 

  37. Churcher, I. Tau therapeutic strategies for the treatment of Alzheimer's disease. Curr. Top. Med. Chem. 6, 579–595 (2006).

    CAS  PubMed  Google Scholar 

  38. Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 102, 6990–6995 (2005). Study that validates GSK3β as a target for tau-directed therapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Phiel, C. J., Wilson, C. A., Lee, V. M. Y. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    CAS  PubMed  Google Scholar 

  40. Tian, Q. & Wang, J. Role of serine/threonine protein phosphatase in Alzheimer's disease. Neurosignals 11, 262–269 (2002).

    CAS  PubMed  Google Scholar 

  41. Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence? Nature Med. 5, S18–S25 (2004).

    Google Scholar 

  42. Moreira, P. I. et al. Oxidative stress and neurodegeneration. Ann. NY Acad. Sci. 1043, 545–552 (2005).

    CAS  PubMed  Google Scholar 

  43. King, M. E. et al. Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J. Cell Biol. 175, 541–546 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. Tau is essential to β-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA 99, 6364–6369 (2002). Study that substantiates the notion that tau may be a mediator of upstream pathological events, namely Aβ-induced neurotoxicity.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Q. et al. Tau modifiers as therapeutic targets for Alzheimer's disease. Biochim. Biophys. Acta 1739, 211–215 (2005).

    CAS  PubMed  Google Scholar 

  46. Schweers, O., Mandelkow, E., Biernat, J. & Mandelkow, E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein τ controls the in vitro assembly of paired helical filaments. Proc. Natl Acad. Sci. USA 92, 8463–8467 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. David, D. C. et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 280, 23802–23814 (2005).

    CAS  PubMed  Google Scholar 

  48. Blurton-Jones, M. & LaFerla, F. M. Pathways by which Aβ facilitates tau pathology. Curr. Alzheimer Res. 3, 437–448 (2006).

    CAS  PubMed  Google Scholar 

  49. Oddo, S. et al. Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathology. J. Biol. Chem. 281, 1599–1604 (2006).

    CAS  PubMed  Google Scholar 

  50. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007). Study that suggests the role tau might have as a mediator of neurodegeneration. This study also suggests that tau reduction may be therapeutically beneficial.

    CAS  PubMed  Google Scholar 

  51. Ikegami, S., Harada, A. & Hirokawa, N. Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci. Lett. 279, 129–132 (2000).

    CAS  PubMed  Google Scholar 

  52. Forman, M. S., Trojanowski, J. Q. & Lee, V. M. -Y. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature Med. 10, 1055–1063 (2004).

    CAS  PubMed  Google Scholar 

  53. Trojanowski, J. Q. & Mattson, M. P. Overview of protein aggregation in single, double, and triple neurodegenerative brain amyloidoses. Neuromolecular Med. 4, 1–6 (2003).

    CAS  PubMed  Google Scholar 

  54. Mitchell, T. W. et al. Novel method to quantify neuropil threads in brains from elders with or without cognitive impairment. J. Histochem. Cytochem. 48, 1627–1638 (2000).

    CAS  PubMed  Google Scholar 

  55. Trojanowski, J. Q., Smith, A. B., Huryn, D. & Lee, V. M. -Y. Microtubule-stabilizing drugs for therapy of Alzheimer's disease and other neurodegenerative disorders with axonal transport impairments. Expert Opin. Pharmacother. 6, 683–686 (2005).

    CAS  PubMed  Google Scholar 

  56. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    CAS  PubMed  Google Scholar 

  57. Zhang, B. et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl Acad. Sci. USA 102, 227–231 (2005).

    CAS  PubMed  Google Scholar 

  58. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639 (1992).

    CAS  PubMed  Google Scholar 

  59. Arriagada, P. V., Marzloff, K. & Hyman, B. T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 42, 1681–1688 (1992).

    CAS  PubMed  Google Scholar 

  60. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005). Interesting study that shows that suppression of tau improves memory function even though NFTs continue to grow.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Trojanowski, J. Q. & Lee, V. M. Pathological tau: a loss of normal function or a gain in toxicity? Nature Neurosci. 8, 1136–1137 (2005).

    CAS  PubMed  Google Scholar 

  62. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005). Together with reference 61, this study shows that axonal transport defects may be early pathological events in tau-mediated neurodegeneration.

    CAS  PubMed  Google Scholar 

  63. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007). Paper demonstrating that microgliosis and synaptic pathology may be the earliest manifestation of neurodegenerative tauopathies. The paper also suggests that abrogation of tau-induced microglial activation may be therapeutically beneficial.

    CAS  PubMed  Google Scholar 

  64. Lee, V. M.-Y., Kenyon, T. K. & Trojanowski, J. Q. Transgenic animal models of tauopathies. Biochim. Biophys. Acta 1739, 251–259 (2005).

    CAS  PubMed  Google Scholar 

  65. Shaw, L. M., Korecka, M., Clark, C. M., Lee, V. M. & Trojanowski, J. Q. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nature Rev. Drug Discov. 6, 295–303 (2007).

    CAS  Google Scholar 

  66. Necula, M., Chirita, C. N. & Kuret, J. Cyanine dye N744 inhibits tau fibrillization by blocking filament extension: implications for the treatment of tauopathic neurodegenerative diseases. Biochemistry 44, 10227–10237 (2005).

    CAS  PubMed  Google Scholar 

  67. Pickhardt, M. et al. Screening for inhibitors of tau polymerization. Curr. Alzheimer Res. 2, 219–226 (2005).

    CAS  PubMed  Google Scholar 

  68. Pickhardt, M. et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J. Biol. Chem. 280, 3628–3635 (2005).

    CAS  PubMed  Google Scholar 

  69. Taniguchi, S. et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 280, 7614–7623 (2005).

    CAS  PubMed  Google Scholar 

  70. Frid, P., Anisimov, S. V. & Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Rev. 53, 135–160 (2007).

    CAS  PubMed  Google Scholar 

  71. Chirita, C., Necula, M. & Kuret, J. Ligand-dependent inhibition and reversal of tau filament formation. Biochemistry 43, 2879–2887 (2004).

    CAS  PubMed  Google Scholar 

  72. Liu, M., Ni, J., Kosik, K. S. & Yeh, L. A. Development of a fluorescent high throughput assay for tau aggregation. Assay Drug Dev. Technol. 2, 609–619 (2004).

    CAS  PubMed  Google Scholar 

  73. Wischik, C. M., Edwards, P. C., Lai, R. Y. K., Roth, M. & Harrington, C. R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA 93, 11213–11218 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ignatova, Z. & Gierasch, L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl Acad. Sci. USA 103, 13357–13361 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gotz, J. et al. A decade of tau transgenic animal models and beyond. Brain Pathol. 17, 91–103 (2007). An up-to-date account of tau transgenic animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McGowan, E., Eriksen, J. & Hutton, M. A decade of modeling Alzheimer's disease in transgenic mice. Trends Genet. 22, 281–289 (2006).

    CAS  PubMed  Google Scholar 

  77. Van Dam, D. & De Deyn, P. P. Drug discovery in dementia: the role of rodent models. Nature Rev. Drug Discov. 5, 956–970 (2006).

    CAS  Google Scholar 

  78. Schindowski, K. et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am. J. Pathol. 169, 599–616 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Melnikova, I. Therapies for Alzheimer's disease. Nature Rev. Drug Discov. 6, 341–342 (2007).

    CAS  Google Scholar 

  80. Okamura, N. et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease. J. Neurosci. 25, 10857–10862 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pardridge, W. M. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005).

    PubMed  PubMed Central  Google Scholar 

  82. Gotz, J. et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J. 14, 1304–1313 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Spittaels, K. et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am. J. Pathol. 155, 2153–2165 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Probst, A. et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469–481 (2000).

    CAS  PubMed  Google Scholar 

  85. Ishihara, T. et al. Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am. J. Pathol. 158, 555–562 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genet. 25, 402–405 (2000).

    CAS  PubMed  Google Scholar 

  87. Gotz, J., Chen, F., Barmettler, R. & Nitsch, R. M. Tau filament formation in transgenic mice expressing P301L tau. J. Biol. Chem. 276, 529–534 (2001).

    CAS  PubMed  Google Scholar 

  88. Duff, K. et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7, 87–98 (2000).

    CAS  PubMed  Google Scholar 

  89. Gotz, J. et al. Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. Eur. J. Neurosci. 13, 2131–2140 (2001).

    CAS  PubMed  Google Scholar 

  90. Allen, B. et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J. Neurosci. 22, 9340–9351 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lim, F. et al. FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and tau filaments in forebrain. Mol. Cell Neurosci. 18, 702–714 (2001).

    CAS  PubMed  Google Scholar 

  92. Tanemura, K. et al. Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J. Neurosci. 22, 133–141 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tatebayashi, Y. et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc. Natl Acad. Sci. USA 99, 13896–13901 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tesseur, I. et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 157, 1495–1510 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahlijanian, M. K. et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc. Natl Acad. Sci. USA 97, 2910–2915 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Capsoni, S. et al. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc. Natl Acad. Sci. USA 97, 6826–6831 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P. & LaFerla, F. M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol. Aging 24, 1063–1070 (2003).

    CAS  PubMed  Google Scholar 

  98. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    CAS  PubMed  Google Scholar 

  99. Crowe, A., Ballatore, C., Hyde, E., Trojanowski, J. Q. & Lee, V. M. -Y. High throughput screening for small molecule inhibitors of heparin-induced tau fibril formation. Biochem. Biophys. Res. Commun. 358, 1–6 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dickey, C. A. et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest. 117, 648–658 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goryunov, D. & Liem, R. K. H. CHIP-ping away at tau. J. Clin. Invest. 117, 590–592 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsuoka, Y. et al. Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J. Mol. Neurosci. 31, 165–170 (2007).

    CAS  PubMed  Google Scholar 

  103. Pasinetti, G. M. From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer's disease: the role of NSAIDs and cyclooxygenase in β-amyloidosis and clinical dementia. J. Alzheimers Dis. 4, 435–445 (2002).

    CAS  PubMed  Google Scholar 

  104. Klegeris, A. & McGeer, P. L. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr. Alzheimer Res. 2, 355–365 (2005).

    CAS  PubMed  Google Scholar 

  105. Townsend, K. P. & Pratico, D. Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J. 19, 1592–1601 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for their contributions to the work summarized here, which has been supported by grants from the US National Institutes of Health (P01 AG09215, P30 AG10124, P01 AG11542, P01 AG14382, P01 AG14449, P01 AG17586, PO1 AG19724, P01 NS-044233, UO1 AG24904), and the Marian S. Ware Alzheimer Program. Finally, we are indebted to our patients and their families, whose commitment to research has made our work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Trojanowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

Institute on Aging

Alzheimer's Disease Center

Center for Neurodegenerative Disease Research

Glossary

Senile plaque

A site of Aβ accumulation and dystrophic neurites in the brains of mouse models and patients with Alzheimer's disease.

Alternative splicing

The process by which introns are excised from RNA after transcription and the cut ends of the RNA are rejoined to form a continuous message. Alternative splicing allows the production of different messages from the same DNA molecule.

Oxidative stress

A disturbance in the pro-oxidant-antioxidant balance in favour of the pro-oxidant, leading to potential cellular damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation and lipid peroxidation products.

Dystrophic neurites

The processes (axons and dendrites) of neurons that are damaged or degenerating in AD.

Microglia

A non-neuronal cell type that is present in the spinal cord and the brain (it is the resident CNS macrophage) and is characterized by its ramified morphology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballatore, C., Lee, VY. & Trojanowski, J. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8, 663–672 (2007). https://doi.org/10.1038/nrn2194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing