Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation

Key Points

  • Genome segregation is a fundamental process that all cells must perform with high accuracy and in precise coordination with other cell-cycle events. The molecular mechanisms that underpin plasmid and chromosome segregation in prokaryotes are the subject of intense investigation.

  • The segrosome is the nucleoprotein molecular machine that directs the intracellular movement of plasmids during segregation. Plasmid segregation requires a pair of proteins that interacts with a centromere analogue. One protein is most commonly a member of the ParA superfamily of Walker-type ATPases, whereas the partner protein is a DNA-binding factor that interacts site-specifically with the plasmid centromere analogue.

  • Plasmid centromeres have diverse organizations, although all centromeres contain repeat motifs that are recognized by the DNA-binding protein. The ParA protein does not contact the centromere directly, but is instead recruited into the segrosome complex by the DNA-binding factor.

  • Although their mode of action remains to be fully elucidated, there is growing evidence that ParA proteins can polymerize into extensive filamentous structures. Polymerization is controlled by nucleotide binding and hydrolysis, as well as by the partner protein. ParA polymerization within the segrosome could move plasmids in bipolar orientations during segregation.

  • The tertiary structures of several partition proteins have recently been solved, providing invaluable new insights into segrosome organization and assembly.

Abstract

The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic organization of plasmid segregation gene cassettes.
Figure 2: The diverse organization of plasmid centromeres.
Figure 3: Tertiary structures of segregation proteins.
Figure 4: Comparative sequence organization of selected ParA superfamily proteins.
Figure 5: Speculative model for segregation of plasmids that encode ParA proteins.

Similar content being viewed by others

References

  1. Gitai, Z. The new bacterial cell biology: moving parts and subcellular architecture. Cell 120, 577–586 (2005).

    CAS  PubMed  Google Scholar 

  2. Hayes, F. The function and organization of plasmids. Methods Mol. Biol. 235, 1–17 (2003).

    CAS  PubMed  Google Scholar 

  3. Bartosik, A. A. & Jagura-Burdzy, G. Bacterial chromosome segregation. Acta Biochim. Pol. 52, 1–34 (2005).

    CAS  PubMed  Google Scholar 

  4. Errington, J., Murray, H. & Wu, L. J. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos. Trans. R. Soc. Lond. B 360, 497–505 (2005).

    CAS  Google Scholar 

  5. Weitao, T., Dasgupta, S. & Nordstrom, K. Plasmid R1 is present as clusters in the cells of Escherichia coli. Plasmid 43, 200–204 (2000).

    CAS  PubMed  Google Scholar 

  6. Pogliano, J., Ho, T. Q., Zhong, Z. & Helinski, D. R. Multicopy plasmids are clustered and localized in Escherichia coli. Proc. Natl Acad. Sci. USA 98, 4486–4491 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Summers, D. Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol. Microbiol. 29, 1137–1145 (1998).

    CAS  PubMed  Google Scholar 

  8. Hayes, F. Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499 (2003).

    CAS  PubMed  Google Scholar 

  9. Ogura, T. & Hiraga, S. Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32, 351–360 (1983). This paper, and references 10 and 11, first described the active partitioning of plasmids.

    CAS  PubMed  Google Scholar 

  10. Austin, S. & Abeles, A. Partition of unit-copy miniplasmids to daughter cells. I. P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. J. Mol. Biol. 169, 353–372 (1983).

    CAS  PubMed  Google Scholar 

  11. Austin, S. & Abeles, A. Partition of unit-copy miniplasmids to daughter cells. II. The partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J. Mol. Biol. 169, 373–387 (1983).

    CAS  PubMed  Google Scholar 

  12. Gerdes, K. & Molin, S. Partitioning of plasmid R1. Structural and functional analysis of the parA locus. J. Mol. Biol. 190, 269–279 (1986).

    CAS  PubMed  Google Scholar 

  13. Gallie, D. R. & Kado, C. I. Agrobacterium tumefaciens pTAR parA promoter region involved in autoregulation, incompatibility and plasmid partitioning. J. Mol. Biol. 193, 465–478 (1987).

    CAS  PubMed  Google Scholar 

  14. Tabuchi, A. et al. Genetic organization and nucleotide sequence of the stability locus of IncFII plasmid NR1. J. Mol. Biol. 202, 511–525 (1988).

    CAS  PubMed  Google Scholar 

  15. Ludtke, D. N., Eichorn, B. G. & Austin, S. J. Plasmid-partition functions of the P7 prophage. J. Mol. Biol. 209, 393–406 (1989).

    CAS  PubMed  Google Scholar 

  16. Motallebi-Veshareh, M., Rouch, D. A. & Thomas, C. M. A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol. Microbiol. 4, 1455–1463 (1990). Describes the identification of Walker-like, ATP-binding motifs in ParA proteins and shows that the cell-division factor MinD is a member of the ParA family.

    CAS  PubMed  Google Scholar 

  17. Cerin, H. & Hackett, J. The parVP region of the Salmonella typhimurium virulence plasmid pSLT contains four loci required for incompatibility and partition. Plasmid 30, 30–38 (1993).

    CAS  PubMed  Google Scholar 

  18. Lin, Z. & Mallavia, L. P. The partition region of plasmid QpH1 is a member of a family of two trans-acting factors as implied by sequence analysis. Gene 160, 69–74 (1995).

    CAS  PubMed  Google Scholar 

  19. Taghavi, S., Provoost, A., Mergeay, M. & van der Lelie D. Identification of a partition and replication region in the Alcaligenes eutrophus megaplasmid pMOL28. Mol. Gen. Genet. 250, 169–179 (1996).

    CAS  PubMed  Google Scholar 

  20. Macartney, D. P., Williams, D. R., Stafford, T. & Thomas, C. M. Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751. Microbiology 143, 2167–2177 (1997).

    CAS  PubMed  Google Scholar 

  21. Bartosik, D., Baj, J. & Wlodarczyk, M. Molecular and functional analysis of pTAV320, a repABC-type replicon of the Paracoccus versutus composite plasmid pTAV1. Microbiology 144, 3149–3157 (1998).

    CAS  PubMed  Google Scholar 

  22. Ravin, N. & Lane, D. Partition of the linear plasmid N15: interactions of N15 partition functions with the sop locus of the F plasmid. J. Bacteriol. 181, 6898–6906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Inui, M., Roh, J. H., Zahn, K. & Yukawa, H. Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl. Environ. Microbiol. 66, 54–63 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kearney, K., Fitzgerald, G. F. & Seegers, J. F. Identification and characterization of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000. J. Bacteriol. 182, 30–37 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Youngren, B., Radnedge, L., Hu, P., Garcia, E. & Austin, S. A plasmid partition system of the P1-P7par family from the pMT1 virulence plasmid of Yersinia pestis. J. Bacteriol. 182, 3924–3928 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayes, F. The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily. Mol. Microbiol. 37, 528–541 (2000).

    CAS  PubMed  Google Scholar 

  27. Kwong, S. M., Yeo, C. C. & Poh, C. L. Molecular analysis of the pRA2 partitioning region: ParB autoregulates parAB transcription and forms a nucleoprotein complex with the plasmid partition site, parS. Mol. Microbiol. 40, 621–633 (2001).

    CAS  PubMed  Google Scholar 

  28. Ebersbach, G. & Gerdes, K. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl Acad. Sci. USA 98, 15078–15083 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lawley, T. D. & Taylor, D. E. Characterization of the double-partitioning modules of R27: correlating plasmid stability with plasmid localization. J. Bacteriol. 185, 3060–3067 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Soberon, N., Venkova-Canova, T., Ramirez-Romero, M. A., Tellez-Sosa, J. & Cevallos, M. A. Incompatibility and the partitioning site of the repABC basic replicon of the symbiotic plasmid from Rhizobium etli. Plasmid 51, 203–216 (2004).

    CAS  PubMed  Google Scholar 

  31. Fothergill, T. J. G., Barillà, D. & Hayes, F. Protein diversity confers specificity in plasmid segregation. J. Bacteriol. 187, 2651–2661 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sergueev, K., Dabrazhynetskaya, A. & Austin, S. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri. J. Bacteriol. 187, 3369–3373 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gerdes, K., Moller-Jensen, J. & Jensen, R. B. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37, 455–466 (2000).

    CAS  PubMed  Google Scholar 

  34. Yamaichi, Y. & Niki, H. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 14656–14661 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bignell, C. & Thomas, C. M. The bacterial ParA-ParB partitioning proteins. J. Biotechnol. 91, 1–34 (2001).

    CAS  PubMed  Google Scholar 

  36. Surtees, J. A. & Funnell, B. E. Plasmid and chromosome traffic control: how ParA and ParB drive partition. Curr. Top. Dev. Biol. 56, 145–180 (2003).

    CAS  PubMed  Google Scholar 

  37. Funnell, B. E. & Slavcev, R. A. in Plasmid Biology (eds Funnell, B. E. & Phillips, G. J.) 81–104 (American Society for Microbiology Press, Washington, DC, 2004).

    Google Scholar 

  38. Friedman, S. A. & Austin, S. J. The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid 19, 103–112 (1988).

    CAS  PubMed  Google Scholar 

  39. Hayes, F., Radnedge, L., Davis, M. A. & Austin, S. J. The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol. Microbiol. 11, 249–260 (1994).

    CAS  PubMed  Google Scholar 

  40. Hirano, M. et al. Autoregulation of the partition genes of the mini-F plasmid and the intracellular localization of their products in Escherichia coli. Mol. Gen. Genet. 257, 392–403 (1998).

    CAS  PubMed  Google Scholar 

  41. Dorokhov, B. D., Lane, D. & Ravin, N. V. Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase. Mol. Microbiol. 50, 713–721 (2003).

    CAS  PubMed  Google Scholar 

  42. Ogasawara, N. & Yoshikawa, H. Genes and their organization in the replication origin region of the bacterial chromosome. Mol. Microbiol. 6, 629–634 (1992). Identification of parAB homologues on a bacterial chromosome.

    CAS  PubMed  Google Scholar 

  43. Kalnin, K., Stegalkina, S. & Yarmolinsky, M. pTAR-encoded proteins in plasmid partitioning. J. Bacteriol. 182, 1889–1894 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carmelo, E. et al. The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. J. Biol. Chem. 280, 28683–28691 (2005).

    CAS  PubMed  Google Scholar 

  45. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dam, M. & Gerdes, K. Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. J. Mol. Biol. 236, 1289–1298 (1994).

    CAS  PubMed  Google Scholar 

  47. Moller-Jensen, J. et al. Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol. Cell 12, 1477–1487 (2003).

    CAS  PubMed  Google Scholar 

  48. Jensen, R. B., Dam, M. & Gerdes, K. Partitioning of plasmid R1. The parA operon is autoregulated by ParR and its transcription is highly stimulated by a downstream activating element. J. Mol. Biol. 236, 1299–1309 (1994).

    CAS  PubMed  Google Scholar 

  49. Yates, P., Lane, D. & Biek, D. P. The F plasmid centromere, sopC, is required for full repression of the sopAB operon. J. Mol. Biol. 290, 627–638 (1999).

    CAS  PubMed  Google Scholar 

  50. Hao, J. J. & Yarmolinsky, M. Effects of the P1 plasmid centromere on expression of P1 partition genes. J. Bacteriol. 184, 4857–4867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Biek, D. P. & Shi, J. A single 43-bp sopC repeat of plasmid mini-F is sufficient to allow assembly of a functional nucleoprotein partition complex. Proc. Natl Acad. Sci. USA 91, 8027–8031 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams, D. R., Macartney, D. P. & Thomas, C. M. The partitioning activity of the RK2 central control region requires only incC, korB and KorB-binding site OB3 but other KorB-binding sites form destabilizing complexes in the absence of OB3. Microbiology 144, 3369–3378 (1998).

    CAS  PubMed  Google Scholar 

  53. Hayes, F. & Austin, S. Topological scanning of the P1 plasmid partition site. J. Mol. Biol. 243, 190–198 (1994).

    CAS  PubMed  Google Scholar 

  54. Hoischen, C., Bolshoy, A., Gerdes, K. & Diekmann, S. Centromere parC of plasmid R1 is curved. Nucleic Acids Res. 32, 5907–5915 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Austin, S., Friedman, S. & Ludtke, D. Partition functions of unit-copy plasmids can stabilize the maintenance of plasmid pBR322 at low copy number. J. Bacteriol. 168, 1010–1013 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hayes, F., Davis, M. A. & Austin, S. J. Fine-structure analysis of the P7 plasmid partition site. J. Bacteriol. 175, 3443–3451 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dabrazhynetskaya, A., Sergueev, K. & Austin, S. Species and incompatibility determination within the P1par family of plasmid partition elements. J. Bacteriol. 187, 5977–5983 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis, M. A. & Austin, S. J. Recognition of the P1 plasmid centromere analog involves binding of the ParB protein and is modified by a specific host factor. EMBO J. 7, 1881–1888 (1988). This paper, along with reference 63, shows that IHF is required for accurate P1 plasmid segregation.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Funnell, B. E. & Gagnier, L. The P1 plasmid partition complex at parS. II. Analysis of ParB protein binding activity and specificity. J. Biol. Chem. 268, 3616–3624 (1993).

    CAS  PubMed  Google Scholar 

  60. Radnedge, L., Davis, M. A. & Austin, S. J. P1 and P7 plasmid partition: ParB protein bound to its partition site makes a separate discriminator contact with the DNA that determines species specificity. EMBO J. 15, 1155–1162 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Surtees, J. A. & Funnell, B. E. The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J. Biol. Chem. 276, 12385–12394 (2001).

    CAS  PubMed  Google Scholar 

  62. Hayes, F. & Austin, S. J. Specificity determinants of the P1 and P7 plasmid centromere analogs. Proc. Natl Acad. Sci. USA 90, 9228–9232 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Funnell, B. E. Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proc. Natl Acad. Sci. USA 85, 6657–6661 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Funnell, B. E. The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J. Biol. Chem. 266, 14328–14337 (1991).

    CAS  PubMed  Google Scholar 

  65. Davis, M. A. et al. The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol. Microbiol. 21, 1029–1036 (1996).

    CAS  PubMed  Google Scholar 

  66. Bouet, J. Y. & Funnell, B. E. P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J. 18, 1415–1424 (1999). Shows that nucleotide binding and hydrolysis act as a molecular switch for differential behaviour of the ParA protein in autoregulation and partition.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fung, E., Bouet, J. Y. & Funnell, B. E. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J. 20, 4901–4911 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Easter, J. Jr & Gober, J. W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell 10, 427–434 (2002).

    CAS  PubMed  Google Scholar 

  69. Davey, M. J. & Funnell, B. E. Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J. Biol. Chem. 272, 15286–15292 (1997).

    CAS  PubMed  Google Scholar 

  70. Libante, V., Thion, L. & Lane, D. Role of the ATP-binding site of SopA protein in partition of the F plasmid. J. Mol. Biol. 314, 387–399 (2001).

    CAS  PubMed  Google Scholar 

  71. Erdmann, N., Petroff, T. & Funnell, B. E. Intracellular localization of P1 ParB protein depends on ParA and parS. Proc. Natl Acad. Sci. USA 96, 14905–14910 (1999). Shows that the intracellular positioning of individual components of P1 parABS is dictated by other elements in the complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, Y. & Austin, S. The P1 plasmid is segregated to daughter cells by a 'capture and ejection' mechanism coordinated with Escherichia coli cell division. Mol. Microbiol. 46, 63–74 (2002).

    CAS  PubMed  Google Scholar 

  73. Li, Y., Dabrazhynetskaya, A., Youngren, B. & Austin, S. The role of Par proteins in the active segregation of the P1 plasmid. Mol. Microbiol. 53, 93–102 (2004).

    PubMed  Google Scholar 

  74. Mori, H., Kondo, A., Ohshima, A., Ogura, T. & Hiraga, S. Structure and function of the F plasmid genes essential for partitioning. J. Mol. Biol. 192, 1–15 (1986).

    CAS  PubMed  Google Scholar 

  75. Lynch, A. S. & Wang, J. C. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl Acad. Sci. USA 92, 1896–1900 (1995). Along with reference 76, demonstrates ParB-mediated silencing of genes that flank the centromere.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodionov, O., Lobocka, M. & Yarmolinsky, M. Silencing of genes flanking the P1 plasmid centromere. Science 283, 546–549 (1999).

    CAS  PubMed  Google Scholar 

  77. Rodionov, O. & Yarmolinsky, M. Plasmid partitioning and the spreading of P1 partition protein ParB. Mol. Microbiol. 52, 1215–1223 (2004).

    CAS  PubMed  Google Scholar 

  78. Ogura, T. et al. Identification and characterization of gyrB mutants of Escherichia coli that are defective in partitioning of mini-F plasmids. J. Bacteriol. 172, 1562–1568 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Abeles, A. L., Friedman, S. A. & Austin, S. J. Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organisation of the P1 partition region. J. Mol. Biol. 185, 261–272 (1985).

    CAS  PubMed  Google Scholar 

  80. Lemonnier, M., Bouet, J. Y., Libante, V. & Lane, D. Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol. Microbiol. 38, 493–505 (2000).

    CAS  PubMed  Google Scholar 

  81. Barillà, D. & Hayes, F. Architecture of the ParF–ParG protein complex involved in prokaryotic DNA segregation. Mol. Microbiol. 49, 487–499 (2003).

    PubMed  Google Scholar 

  82. Jensen, R. B. & Gerdes, K. Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR–parC complex. J. Mol. Biol. 269, 505–513 (1997).

    CAS  PubMed  Google Scholar 

  83. Mori, H. et al. Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J. Biol. Chem. 264, 15535–15541 (1989).

    CAS  PubMed  Google Scholar 

  84. Breuner, A., Jensen, R. B., Dam, M., Pedersen, S. & Gerdes, K. The centromere-like parC locus of plasmid R1. Mol. Microbiol. 20, 581–592 (1996).

    CAS  PubMed  Google Scholar 

  85. Jensen, R. B., Lurz, R. & Gerdes, K. Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. Proc. Natl Acad. Sci. USA 95, 8550–8555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Austin, S. & Nordstrom, K. Partition-mediated incompatibility of bacterial plasmids. Cell 60, 351–354 (1990).

    CAS  PubMed  Google Scholar 

  87. Nordstrom, K., Molin, S. & Aagaard-Hansen, H. Partitioning of plasmid R1 in Escherichia coli. II. Incompatibility properties of the partitioning system. Plasmid 4, 332–339 (1980).

    CAS  PubMed  Google Scholar 

  88. Lin, Z. & Mallavia, L. P. Functional analysis of the active partition region of the Coxiella burnetii plasmid QpH1. J. Bacteriol. 181, 1947–1952 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rosche, T. M., Siddique, A., Larsen, M. H. & Figurski, D. H. Incompatibility protein IncC and global regulator KorB interact in active partition of promiscuous plasmid RK2. J. Bacteriol. 182, 6014–6026 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Grigoriev, P. S. & Lobocka, M. B. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli. Mol. Microbiol. 42, 355–368 (2001).

    CAS  PubMed  Google Scholar 

  91. Bartosik, D., Szymanik, M. & Wysocka, E. Identification of the partitioning site within the repABC-type replicon of the composite Paracoccus versutus plasmid pTAV1. J. Bacteriol. 183, 6234–6243 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ho, T. Q., Zhong, Z., Aung, S. & Pogliano, J. Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J. 21, 1864–1872 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Funnell, B. E. Partition-mediated plasmid pairing. Plasmid 53, 119–125 (2005).

    CAS  PubMed  Google Scholar 

  94. Edgar, R., Chattoraj, D. K. & Yarmolinsky, M. Pairing of P1 plasmid partition sites by ParB. Mol. Microbiol. 42, 1363–1370 (2001).

    CAS  PubMed  Google Scholar 

  95. Treptow, N., Rosenfeld, R. & Yarmolinsky, M. Partition of nonreplicating DNA by the par system of bacteriophage P1. J. Bacteriol. 176, 1782–1786 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Niki, H. & Hiraga, S. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90, 951–957 (1997). With reference 97, uses cell biology techniques to demonstrate partition-mediated subcellular localization of plasmids.

    CAS  PubMed  Google Scholar 

  97. Gordon, G. S. et al. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90, 1113–1121 (1997).

    CAS  PubMed  Google Scholar 

  98. Webb, C. D. et al. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88, 667–674 (1997).

    CAS  PubMed  Google Scholar 

  99. Glaser, P. et al. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11, 1160–1168 (1997).

    CAS  PubMed  Google Scholar 

  100. Niki, H. & Hiraga, S. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 12, 1036–1045 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gordon, S., Rech, J., Lane, D. and Wright, A. Kinetics of plasmid segregation in Escherichia coli. Mol. Microbiol. 51, 461–469 (2004).

    CAS  PubMed  Google Scholar 

  102. Bignell, C. R., Haines, A. S., Khare, D. & Thomas, C. M. Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol. Microbiol. 34, 205–216 (1999).

    CAS  PubMed  Google Scholar 

  103. Davis, M. A., Martin, K. A. & Austin, S. J. Biochemical activities of the ParA partition protein of the P1 plasmid. Mol. Microbiol. 6, 1141–1147 (1992).

    CAS  PubMed  Google Scholar 

  104. Watanabe, E., Wachi, M., Yamasaki, M. & Nagai, K. ATPase activity of SopA, a protein essential for active partitioning of F plasmid. Mol. Gen. Genet. 234, 346–352 (1992).

    CAS  PubMed  Google Scholar 

  105. Barillà, D., Rosenberg, M. F., Nobbmann, U. & Hayes F. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J. 24, 1453–1464 (2005). Describes ATP-dependent polymerization of a ParA-type protein.

    PubMed  PubMed Central  Google Scholar 

  106. Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer — a conserved biological switch. EMBO J. 24, 270–282 (2005). Description of the tertiary structure of the ParA homologue, Soj.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Quisel, J. D., Lin, D. C. & Grossman, A. D. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell 4, 665–672 (1999).

    CAS  PubMed  Google Scholar 

  108. Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4, 673–682 (1999).

    CAS  PubMed  Google Scholar 

  109. Ebersbach, G. & Gerdes, K. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol. Microbiol. 52, 385–398 (2004).

    CAS  PubMed  Google Scholar 

  110. Shih, Y. L., Le, T. & Rothfield, L. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl Acad. Sci. USA 100, 7865–7870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Goehring, N. W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526 (2005).

    CAS  PubMed  Google Scholar 

  112. van den Ent, F., Moller-Jensen, J., Amos, L. A., Gerdes, K. & Lowe, J. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21, 6935–6943 (2002). With reference 113, describes the protofilament organization and crystal structure of the actin homologue ParM.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Moller-Jensen, J., Jensen, R. B., Lowe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lenart, P. et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436, 812–818 (2005).

    CAS  PubMed  Google Scholar 

  115. Garner, E. C., Campbell, C. S. & Mullins, R. D. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306, 1021–1025 (2004). The first demonstration of dynamic instability in an actin protein.

    CAS  PubMed  Google Scholar 

  116. Jensen, R. B. & Gerdes, K. Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J. 18, 4076–4084 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schumacher, M. A. & Funnell, B. E. Structures of ParB bound to DNA reveal mechanism of partition complex formation. Nature 438, 516–519 (2005). Elucidation of the molecular organization of a partition protein bound to its centromere.

    CAS  PubMed  Google Scholar 

  118. Lobocka, M. & Yarmolinsky, M. P1 plasmid partition: a mutational analysis of ParB. J. Mol. Biol. 259, 366–382 (1996).

    CAS  PubMed  Google Scholar 

  119. Lukaszewicz, M. et al. Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res. 30, 1046–1055 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Balzer, D., Ziegelin, G., Pansegrau, W., Kruft, V. & Lanka, E. KorB protein of promiscuous plasmid RP4 recognizes inverted sequence repetitions in regions essential for conjugative plasmid transfer. Nucleic Acids Res. 20, 1851–1858 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Delbruck, H., Ziegelin, G., Lanka, E. & Heinemann, U. An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4. J. Biol. Chem. 277, 4191–4198 (2002).

    CAS  PubMed  Google Scholar 

  122. Ravin, N. V., Rech, J. &, Lane, D. Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J. Mol. Biol. 329, 875–889 (2003).

    CAS  PubMed  Google Scholar 

  123. Leonard, T. A., Butler, P. J. G. & Lowe, J. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol. Microbiol. 53, 419–432 (2004).

    CAS  PubMed  Google Scholar 

  124. Surtees, J. A. & Funnell, B. E. P1 ParB domain structure includes two independent multimerization domains. J. Bacteriol. 181, 5898–5908 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Khare, D., Ziegelin, G., Lanka, E. & Heinemann, U. Sequence-specific DNA binding determined by contacts outside the helix–turn–helix motif of the ParB homolog KorB. Nature Struct. Mol. Biol. 11, 656–663 (2004).

    CAS  Google Scholar 

  126. Radnedge, L., Youngren, B., Davis, M. & Austin, S. Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. EMBO J. 17, 6076–6085 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Golovanov, A. P., Barillà, D., Golovanova, M., Hayes, F. & Lian, L. Y. ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon–helix–helix structure. Mol. Microbiol. 50, 1141–1153 (2003).

    CAS  PubMed  Google Scholar 

  128. Hayashi, I., Oyama, T. & Morikawa, K. Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus. EMBO J. 20, 1819–1828 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ebersbach, G., Sherratt, D. J. & Gerdes, K. Partition-associated incompatibility caused by random assortment of pure plasmid clusters. Mol. Microbiol. 56, 1430–1440 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by The Wellcome Trust and Biotechnology & Biological Sciences Research Council (F.H.), and the Medical Research Council and Royal Society (D.B.). We thank S. Austin and D. Summers for helpful comments on an early draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Finbarr Hayes or Daniela Barillà.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Escherichia coli

Thermus thermophilus

FURTHER INFORMATION

Finbarr Hayes' homepage

Daniela Barillà's homepage:

Glossary

Actin, tubulin and intermediate filaments

Cytoskeletal proteins that are involved in a range of biological processes in eukaryotic cells. Ancestral homologues of these proteins are now known to exist in bacteria in which they are implicated in plasmid and chromosome partition, among other functions.

Segrosome

A nucleoprotein complex that mediates genome segregation in bacteria.

Site-specific recombinases

DNA-cleavage and rejoining enzymes required for various DNA transactions, including the resolution of plasmid and chromosome dimers to monomers in bacteria.

Plasmid multimers

More than one copy of a plasmid that are joined together to form a single DNA molecule. This reduces plasmid copy number and can lead to plasmid loss unless reversed by the action of site-specific recombinases.

Toxin–antitoxin

A postsegregational cell-killing system usually composed of a pair of plasmid-encoded proteins that form a complex. If a plasmid-free cell arises, the antitoxin cannot be replenished and the liberated toxin causes cell death or severe growth impairment.

Walker box ATPase motifs

Conserved amino-acid motifs that are found in the Walker-type superfamily of ATPases, and which are implicated in the binding and hydrolysis of ATP.

Incompatibility

The phenomenon whereby plasmids that replicate or segregate using identical or closely related mechanisms cannot coexist in the same cell, resulting in subpopulations that possess only one of the plasmids, but not both.

Insertional polymerization

The growth of actin polymers by the insertion of actin subunits at the leading edge of the elongating filament. Actin polymerization involves growth of the polymers at one end and concomitant disassembly at the opposite end (treadmilling).

Src homology 3 domain

(SH3). A feature of many eukaryotic signalling proteins that show specificity for proline-rich sequences. These domains have many functions, including the promotion of protein–protein interactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, F., Barillà, D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 4, 133–143 (2006). https://doi.org/10.1038/nrmicro1342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing