Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What messenger RNA capping tells us about eukaryotic evolution

Abstract

The 5′ cap is a unique feature of eukaryotic cellular and viral messenger RNA that is absent from the bacterial and archaeal domains of life. The cap is formed by three enzymatic reactions at the 5′ terminus of nascent mRNAs. Although the capping pathway is conserved in all eukaryotes, the structure and genetic organization of the component enzymes vary between species. These differences provide insights into the evolution of eukaryotes and eukaryotic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and enzymatic synthesis of the m7G cap of eukaryotic mRNA.
Figure 2: The mRNA capping apparatus differs in fungi compared with metazoans.
Figure 3: Metazoan RNA triphosphatases.
Figure 4: Structural conservation among fungal, viral, microsporidian and protozoan RNA triphosphatases.
Figure 5: Capping-enzyme-based scheme of eukaryotic phylogeny.
Figure 6: Evolution of the metazoan and plant capping systems.
Figure 7: Capping enzymes of DNA viruses.

Similar content being viewed by others

References

  1. Shuman, S. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog. Nucleic Acid Res. Mol. Biol. 66, 1–40 (2000).

    Article  CAS  Google Scholar 

  2. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  CAS  Google Scholar 

  3. Muthukrishnan, S., Both, G. W., Furuichi, Y. & Shatkin, A. J. 5′-terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255, 33–37 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Schwer, B., Mao, X. & Shuman, S. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res. 26, 2050–2057 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwer, B., Saha, N., Mao, X., Chen, H. W. & Shuman, S. Structure–function analysis of yeast mRNA cap methyltransferase and high-copy suppression of conditional mutants by AdoMet synthase and the ubiquitin conjugating enzyme Cdc34p. Genetics 155, 1561–1576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nilsen, T. W. Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends Genet. 17, 678–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  Google Scholar 

  8. She, Q. et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl Acad. Sci. USA 98, 7835–7840 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Slupska, M. M. et al. Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J. Mol. Biol. 309, 347–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fitz-Gibbon, S. T. et al. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl Acad. Sci. USA 99, 984–989 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Deutscher, M. P. & Li, Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 66, 67–105 (2000).

    Article  CAS  Google Scholar 

  12. Yue, Z. et al. Mammalian capping enzyme complements mutant S. cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 12898–12903 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Saha, N., Schwer, B. & Shuman, S. Characterization of human, Schizosaccharomyces pombe and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. J. Biol. Chem. 274, 16553–16562 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Takagi, T., Moore, C. R., Diehn, F. & Buratowski, S. An RNA 5′-triphosphatase related to the protein tyrosine phosphatases. Cell 89, 867–873 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Yokoska, J., Tsukamoto, T., Miura, K., Shiokawa, K. & Mizumoto, K. Cloning and characterization of mRNA capping enzyme and mRNA (guanine-7-)-methyltransferase cDNAs from Xenopus laevis. Biochem. Biophys. Res. Commun. 268, 617–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Tsukamoto, T. et al. Isolation and characterization of the yeast mRNA capping enzyme β subunit gene encoding RNA 5′-triphosphatase, which is essential for cell viability. Biochem. Biophys. Res. Commun. 239, 116–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, S. P., Deng, L., Ho, C. K. & Shuman, S. Phylogeny of mRNA capping enzymes. Proc. Natl Acad. Sci. USA 94, 9573–9578 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, S. P. & Shuman, S. Structure–function analysis of the mRNA cap methyltransferase of Saccharomyces cerevisiae. J. Biol. Chem. 272, 14683–14689 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Yamada-Okabe, T. et al. Isolation and characterization of the Candida albicans gene for mRNA 5′ triphosphatase: association of mRNA 5′ triphosphatase and mRNA 5′ guanylyltransferase activities is essential for the function of mRNA 5′ capping enzyme in vivo. FEBS Lett. 435, 49–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Schwer, B., Lehman, K., Saha, N. & Shuman, S. Characterization of the mRNA capping apparatus of Candida albicans. J. Biol. Chem. 276, 1857–1864 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Shuman, S., Liu, Y. & Schwer, B. Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc. Natl Acad. Sci. USA 91, 12046–12050 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Pei, Y., Schwer, B., Hausmann, S. & Shuman, S. Characterization of Schizosaccharomyces pombe RNA triphosphatase. Nucleic Acids Res. 29, 387–396 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lima, C. D., Wang, L. K. & Shuman, S. Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Cell 99, 533–543 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Changela, A., Ho, C. K., Martins, A., Shuman, S. & Mondragon, A. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. EMBO J. 20, 2575–2586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho, C. K., Pei, Y. & Shuman, S. Yeast and viral RNA 5′ triphosphatases comprise a new nucleoside triphosphatase family. J. Biol. Chem. 273, 34151–34156 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Ho, C. K. & Shuman, S. A yeast-like mRNA capping apparatus in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 98, 3050–3055 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Pei, Y., Ho, C. K., Schwer, B. & Shuman, S. Mutational analyses of yeast RNA triphosphatases highlight a common mechanism of metal-dependent NTP hydrolysis and a means of targeting enzymes to pre-mRNAs in vivo by fusion to the guanylyltransferase component of the capping apparatus. J. Biol. Chem. 274, 28865–28874 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Bisaillon, M. & Shuman, S. Structure–function analysis of the active site tunnel of yeast RNA triphosphatase. J. Biol. Chem. 276, 17261–17266 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Hausmann, S., Vivarès, C. P. & Shuman, S. Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi. J. Biol. Chem. 277, 96–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Silva, E., Ullu, E., Kobayashi, R. & Tschudi, C. Trypanosome capping enzymes display a novel two-domain structure. Mol. Cell. Biol. 18, 4612–4619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho, C. K. & Shuman, S. Trypanosoma brucei RNA triphosphatase: antiprotozoal drug target and guide to eukaryotic phylogeny. J. Biol. Chem. 276, 46182–46186 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Baldauf, S. L., Roger, A. J., Wenk-Siefart, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Shuman, S. The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. Cold Spring Harbor Symp. Quant. Biol. (in the press).

  35. Wainright, P. O., Hinkle, G., Sogin, M. L. & Stickel, S. K. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260, 340–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Anantharaman, V., Koonin, E. V. & Aravind, L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30, 1427–1464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, L., Martins, A., Deng, L. & Shuman, S. Structure–function analysis of the triphosphatase component of vaccinia virus mRNA capping enzyme. J. Virol. 71, 9837–9843 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pena, L., Yanez, J., Revilla, Y., Vinuela, E. & Salas, M. L. African swine fever virus guanylyltransferase. Virology 193, 319–328 (1992).

    Article  Google Scholar 

  39. Larsen, M., Gunge, N. & Meinhardt, F. Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 40, 243–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Tigemann, M., Jeske, S., Larsen, M. & Meinhardt, F. Kluyveromyces lactis killer plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18, 815–825 (2001).

    Article  Google Scholar 

  41. Jin, J., Dong, W. & Guarino, L. A. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5′-triphosphatase and ATPase activities. J. Virol. 72, 10011–10019 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guarino, L. A., Jin, J. & Dong, W. Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. J. Virol. 72, 10003–10010 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martins, A. & Shuman, S. Mutational analysis of baculovirus capping enzyme Lef4 delineates an autonomous triphosphatase domain and structural determinants of divalent cation specificity. J. Biol. Chem. 276, 45522–45529 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Martins, A. & Shuman, S. Mechanism of phosphoanhydride cleavage by baculovirus phosphatase. J. Biol. Chem. 275, 35070–35076 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. He, J. G. et al. Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology 291, 126–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Van Etten, J. L. & Meints, R. H. Giant viruses infecting algae. Annu. Rev. Microbiol. 53, 447–494 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Håkansson, K., Doherty, A. J., Shuman, S. & Wigley, D. B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553 (1997).

    Article  PubMed  Google Scholar 

  48. Gong, C. & Shuman, S. Chlorella virus RNA triphosphatase: mutational analysis and mechanism of inhibition by tripolyphosphate. J. Biol. Chem. 277, 15317–15324 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Iyer, L. M., Aravand, L. & Koonin, E. V. Common origin or four diverse families of large eukaryotic DNA viruses. J. Virol. 75, 11720–11734 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Saccharomyces Genome Database

Cet1

Cth1

Swiss-Prot

eIF4E

Pct1

FURTHER READING

Encyclopedia of Life Sciences

m7G cap

Glossary

APICOMPLEXA

A taxon of protozoa that includes the pathogens Plasmodium, Toxoplasma, Eimeria and Cryptosporidium.

CRENARCHAEA

One of two kingdoms within the archaeal domain, the other being Euryarchaea.

EPISOME

An extrachromosomal genetic element.

EUGLENOZOA

A taxon of protozoa that includes the pathogens Trypanosoma and Leishmania.

METAZOA

Multicellular animals that are composed of differentiated cells.

MICROSPORIDIA

Small spore-forming unicellular eukaryotes that have an obligate intracellular parasitic lifestyle.

PHYLOGENY

The evolutionary history of organisms.

PROTEOME

The catalogue of predicted proteins that is encoded by an organism's genome.

PROTOZOA

Unicellular animals.

TAXA

The names of the taxonomic groups.

TAXONOMY

An orderly classification of species according to their presumed natural relationships.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat Rev Mol Cell Biol 3, 619–625 (2002). https://doi.org/10.1038/nrm880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing