Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of microtubule organization and dynamics: two ends in the limelight

Key Points

  • Microtubule organization and dynamics are controlled by proteins that associate with the two microtubule extremities, the plus end and the minus end.

  • Proteins accumulating at microtubule ends can promote or inhibit microtubule polymerization, enhance or block microtubule disassembly, or induce transitions between microtubule growth and shortening.

  • Microtubule plus-end-tracking proteins (+TIPs) can accumulate at microtubule ends by recognizing the stabilizing GTP cap at growing microtubule tips or the curvature of the outermost part of the microtubule, or by plus-end-directed motor activity. This accumulation can be enhanced by electrostatic interactions between positively charged protein domains and the negatively charged microtubule lattice.

  • +TIPs form extensive interaction networks, which depend on a limited number of protein motifs and modules that bind to each other with moderate affinity, allowing rapid remodelling of the end-associated complexes during microtubule growth and shortening. The recruitment of proteins with SxIP and cytoskeleton-associated protein Gly-rich (CAP-Gly) domains by the 'autonomous' +TIPs of the end-binding protein (EB) family plays a major part in the formation of these networks.

  • +TIP networks are responsible for a large range of cellular functions, such as microtubule guidance along other cytoskeletal elements, microtubule attachment to the cell cortex, kinetochores and intracellular membrane organelles, positioning of microtubule arrays and signalling.

  • Microtubule minus-end-targeting proteins (−TIPs) of the calmodulin-regulated spectrin-associated protein (CAMSAP) and Patronin family accumulate at free, growing microtubule minus ends and control the architecture of microtubule networks by stabilizing non-centrosomal microtubules.

  • A wide range of diverse pharmacological agents can target microtubule tips either directly or indirectly and cooperate with +TIPs in regulating the dynamics of microtubule ends.

Abstract

Microtubules have fundamental roles in many essential biological processes, including cell division and intracellular transport. They assemble and disassemble from their two ends, denoted the plus end and the minus end. Significant advances have been made in our understanding of microtubule plus-end-tracking proteins (+TIPs) such as end-binding protein 1 (EB1), XMAP215, selected kinesins and dynein. By contrast, information on microtubule minus-end-targeting proteins (−TIPs), such as the calmodulin-regulated spectrin-associated proteins (CAMSAPs) and Patronin, has only recently started to emerge. Here, we review our current knowledge of factors, including microtubule-targeting agents, that associate with microtubule ends to control the dynamics and function of microtubules during the cell cycle and development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tubulin assembly–disassembly cycle.
Figure 2: Recognition of growing microtubule ends by 'autonomous tip trackers'.
Figure 3: Microtubule plus-end-tracking protein (+TIP) networks.
Figure 4: Cellular functions of microtubule plus-end-tracking protein (+TIP) networks.
Figure 5: Comparison of the localization and turnover of the microtubule plus-end-tracking protein (+TIP) EB1 and the minus-end-targeting protein (−TIP) CAMSAP2 at growing microtubule ends.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    CAS  PubMed  Google Scholar 

  2. Hyman, A. A., Chretien, D., Arnal, I. & Wade, R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α,β)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).

    CAS  PubMed  Google Scholar 

  3. Alushin, G. M. et al. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157, 1117–1129 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015). This paper describes cryo-electron microscopy structures of microtubules bound to GMPCPP, GTPγS or GDP, decorated with either a kinesin motor domain or the CH domain of EB3, at the highest resolution that has been achieved up to now.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yajima, H. et al. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. J. Cell Biol. 198, 315–322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tran, P. T., Walker, R. A. & Salmon, E. D. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends. J. Cell Biol. 138, 105–117 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Walker, R. A., Inoue, S. & Salmon, E. D. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro. J. Cell Biol. 108, 931–937 (1989).

    CAS  PubMed  Google Scholar 

  8. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    CAS  PubMed  Google Scholar 

  9. Brouhard, G. J. & Rice, L. M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207, 323–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Odde, D. J., Cassimeris, L. & Buettner, H. M. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J. 69, 796–802 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gardner, M. K., Zanic, M., Gell, C., Bormuth, V. & Howard, J. The depolymerizing kinesins Kip3 (kinesin-8) and MCAK (kinesin-13) are catastrophe factors that destabilize microtubules by different mechanisms. Cell 147, 1092–1103 (2011).

    CAS  PubMed  Google Scholar 

  12. Coombes, C. E., Yamamoto, A., Kenzie, M. R., Odde, D. J. & Gardner, M. K. Evolving tip structures can explain age-dependent microtubule catastrophe. Curr. Biol. 23, 1342–1348 (2013). Together with references 10 and 11, this paper shows that the probability of microtubule catastrophe depends on the length of time the microtubule has been growing, and suggests a potential mechanism for this ageing phenomenon.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    CAS  PubMed  Google Scholar 

  15. Dimitrov, A. et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353–1356 (2008).

    CAS  PubMed  Google Scholar 

  16. Schuyler, S. C. & Pellman, D. Microtubule 'plus-end-tracking proteins': the end is just the beginning. Cell 105, 421–424 (2001).

    CAS  PubMed  Google Scholar 

  17. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309–322 (2008).

    CAS  PubMed  Google Scholar 

  18. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Bassam, J. et al. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol. Biol. Cell 23, 2878–2890 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Srayko, M., Kaya, A., Stamford, J. & Hyman, A. A. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev. Cell 9, 223–236 (2005).

    CAS  PubMed  Google Scholar 

  21. van der Vaart, B. et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J. Cell Biol. 193, 1083–1099 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Currie, J. D. et al. The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol. Biol. Cell 22, 4343–4361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Komarova, Y. et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol. 184, 691–706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanic, M., Widlund, P. O., Hyman, A. A. & Howard, J. Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat. Cell Biol. 15, 688–693 (2013). This in vitro study shows that EB1 and XMAP215 can act synergistically to enhance microtubule polymerization.

    CAS  PubMed  Google Scholar 

  25. Maurer, S. P. et al. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr. Biol. 24, 372–384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    CAS  PubMed  Google Scholar 

  27. Moores, C. A. et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903–909 (2002).

    CAS  PubMed  Google Scholar 

  28. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Asenjo, A. B. et al. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep. 3, 759–768 (2013).

    CAS  PubMed  Google Scholar 

  30. Burns, K. M., Wagenbach, M., Wordeman, L. & Schriemer, D. C. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization. Structure 22, 1173–1183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Varga, V., Leduc, C., Bormuth, V., Diez, S. & Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138, 1174–1183 (2009).

    CAS  PubMed  Google Scholar 

  32. Su, X., Ohi, R. & Pellman, D. Move in for the kill: motile microtubule regulators. Trends Cell Biol. 22, 567–575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase Kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maurer, S. P., Bieling, P., Cope, J., Hoenger, A. & Surrey, T. GTPγS microtubules mimic the growing microtubule end structure recognised by end-binding proteins (EBs). Proc. Natl Acad. Sci. USA 109, 3988–3993 (2011).

    Google Scholar 

  35. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    CAS  PubMed  Google Scholar 

  37. Bieling, P., Telley, I. A. & Surrey, T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142, 420–432 (2010).

    CAS  PubMed  Google Scholar 

  38. van der Vaart, B. et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev. Cell 27, 145–160 (2013).

    CAS  PubMed  Google Scholar 

  39. He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663–672 (2014). This study combines in vitro and cellular data to show how the non-motile kinesin-4 family member KIF7 regulates the length of axonemal microtubules and ciliary function.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hafner, J., Mayr, M. I., Mockel, M. M. & Mayer, T. U. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1 and PP1 on Kif18A. Nat. Commun. 5, 4397 (2014).

    PubMed  Google Scholar 

  41. Du, Y., English, C. A. & Ohi, R. The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr. Biol. 20, 374–380 (2010).

    CAS  PubMed  Google Scholar 

  42. Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. & Wordeman, L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252–262 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Bassam, J. et al. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell 19, 245–258 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimaldi, A. D. et al. CLASPs are required for proper microtubule localization of end-binding proteins. Dev. Cell 30, 343–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Galjart, N. CLIPs and CLASPs and cellular dynamics. Nat. Rev. Mol. Cell Biol. 6, 487–498 (2005).

    CAS  PubMed  Google Scholar 

  46. Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. & Borisy, G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lazarus, J. E., Moughamian, A. J., Tokito, M. K. & Holzbaur, E. L. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol. 11, e1001611 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hendricks, A. G. et al. Dynein tethers and stabilizes dynamic microtubule plus ends. Curr. Biol. 22, 632–637 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Redemann, S. et al. Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos. PLoS ONE 5, e12301 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).

    CAS  PubMed  Google Scholar 

  52. McNally, F. J. Mechanisms of spindle positioning. J. Cell Biol. 200, 131–140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Samora, C. P. et al. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat. Cell Biol. 13, 1040–1050 (2011).

    CAS  PubMed  Google Scholar 

  54. Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430–36434 (2003).

    CAS  PubMed  Google Scholar 

  55. De Groot, C. O. et al. Molecular insights into mammalian end-binding protein heterodimerization. J. Biol. Chem. 285, 5802–5814 (2010).

    CAS  PubMed  Google Scholar 

  56. Slep, K. C. et al. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J. Cell Biol. 168, 587–598 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gireesh, K. K. et al. Microtubule +TIP protein EB1 binds to GTP and undergoes dissociation from dimer to monomer on binding GTP. Biochemistry 53, 5551–5557 (2014).

    CAS  PubMed  Google Scholar 

  58. Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell 27, 976–991 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xia, P. et al. Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking. Mol. Biol. Cell 25, 4166–4173 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Buey, R. M. et al. Insights into EB structure and the role of its C-terminal domain in discriminating microtubule tips from lattice. Mol. Biol. Cell 22, 2912–2923 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Iimori, M. et al. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules. Exp. Cell Res. 318, 262–275 (2012).

    CAS  PubMed  Google Scholar 

  62. Ferreira, J. G., Pereira, A. J., Akhmanova, A. & Maiato, H. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. J. Cell Biol. 201, 709–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zimniak, T., Stengl, K., Mechtler, K. & Westermann, S. Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p. J. Cell Biol. 186, 379–391 (2009). This study is an example of how cell cycle-specific phosphorylation can regulate a +TIP.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xia, P. et al. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore–microtubule interactions in mitosis. Proc. Natl Acad. Sci. USA 109, 16564–16569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Peth, A., Boettcher, J. P. & Dubiel, W. Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: possible consequences for microtubule filament stability. J. Mol. Biol. 368, 550–563 (2007).

    CAS  PubMed  Google Scholar 

  66. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    CAS  PubMed  Google Scholar 

  67. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    CAS  PubMed  Google Scholar 

  68. Seetapun, D., Castle, B. T., McIntyre, A. J., Tran, P. T. & Odde, D. J. Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22, 1681–1687 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dragestein, K. A. et al. Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends. J. Cell Biol. 180, 729–737 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zanic, M., Stear, J. H., Hyman, A. A. & Howard, J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 4, e7585 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A. & Surrey, T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bechstedt, S., Lu, K. & Brouhard, G. J. Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice. Curr. Biol. 24, 2366–2375 (2014). This study reveals a new mechanism of microtubule-end recognition based on lattice curvature.

    CAS  PubMed  Google Scholar 

  73. Al-Bassam, J. & Chang, F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol. 21, 604–614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Bassam, J., Larsen, N. A., Hyman, A. A. & Harrison, S. C. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. Structure 15, 355–362 (2007).

    CAS  PubMed  Google Scholar 

  75. Fox, J. C., Howard, A. E., Currie, J. D., Rogers, S. L. & Slep, K. C. The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array. Mol. Biol. Cell 25, 2375–2392 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A. TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857–860 (2012). This paper provides important insights into the mechanism underlying the activity of XMAP215 family of microtubule polymerases, based on the structure of a TOG domain bound to a tubulin dimer.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ayaz, P. et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3, e03069 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Widlund, P. O. et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc. Natl Acad. Sci. USA 108, 2741–2746 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakamura, S. et al. Dissecting the nanoscale distributions and functions of microtubule-end-binding proteins EB1 and ch-TOG in interphase HeLa cells. PLoS ONE 7, e51442 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gudimchuk, N. et al. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat. Cell Biol. 15, 1079–1088 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stumpff, J. et al. A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol. Cell 43, 764–775 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Weaver, L. N. et al. Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr. Biol. 21, 1500–1506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Su, X. et al. Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol. Cell 43, 751–763 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cooper, J. R., Wagenbach, M., Asbury, C. L. & Wordeman, L. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nat. Struct. Mol. Biol. 17, 77–82 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Talapatra, S. K., Harker, B. & Welburn, J. P. The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch. eLife 4, 06421 (2015).

    Google Scholar 

  86. Ems-McClung, S. C. et al. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr. Biol. 23, 2491–2499 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    CAS  PubMed  Google Scholar 

  88. Fourniol, F. J. et al. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 Å resolution. J. Cell Biol. 191, 463–470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lampert, F., Hornung, P. & Westermann, S. The Dam1 complex confers microtubule plus end-racking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189, 641–649 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Alushin, G. M. et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805–810 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Joglekar, A. P., Bloom, K. S. & Salmon, E. D. Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr. Opin. Cell Biol. 22, 57–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Weisbrich, A. et al. Structure–function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14, 959–967 (2007).

    CAS  PubMed  Google Scholar 

  94. Mishima, M. et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc. Natl Acad. Sci. USA 104, 10346–10351 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Honnappa, S. et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663–671 (2006).

    CAS  PubMed  Google Scholar 

  96. Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–376 (2009). This study reveals the structural basis of the interaction between EBs and their binding partners with the SxIP motif, uncovering the most commonly used mechanism for microtubule plus end recruitment.

    CAS  PubMed  Google Scholar 

  97. Kumar, P. & Wittmann, T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol. 22, 418–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jiang, K. et al. A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr. Biol. 22, 1800–1807 (2012).

    CAS  PubMed  Google Scholar 

  99. Tamura, N. et al. A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset. Biol. Open 4, 155–169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kumar, P. et al. Multisite phosphorylation disrupts arginine–glutamate salt bridge networks required for binding of cytoplasmic linker-associated protein 2 (CLASP2) to end-binding protein 1 (EB1). J. Biol. Chem. 287, 17050–17064 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, W. et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J. Cell Biol. 199, 849–862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Duellberg, C. et al. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat. Cell Biol. 16, 804–811 (2014). This paper describes a multifactor in vitro reconstitution demonstrating the importance of hierarchical interactions and competition for protein targeting to, and +TIP network formation at, growing microtubule tips.

    CAS  PubMed  Google Scholar 

  103. Roberts, A. J., Goodman, B. S. & Reck-Peterson, S. L. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 3, e02641 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Tanenbaum, M. E. et al. A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr. Biol. 21, 1356–1365 (2011).

    CAS  PubMed  Google Scholar 

  105. Gupta, K. K., Alberico, E. O., Nathke, I. S. & Goodson, H. V. Promoting microtubule assembly: a hypothesis for the functional significance of the +TIP network. Bioessays 36, 818–826 (2014).

    CAS  PubMed  Google Scholar 

  106. Cohen, R. J. & Benedek, G. B. Equilibrium and kinetic theory of polymerization and the sol-gel transition. J. Phys. Chem. 86, 3696–3714 (1982).

    CAS  Google Scholar 

  107. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003).

    CAS  PubMed  Google Scholar 

  109. Huelsmann, S. & Brown, N. H. Spectraplakins. Curr. Biol. 24, R307–R308 (2014).

    CAS  PubMed  Google Scholar 

  110. Alves-Silva, J. et al. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J. Neurosci. 32, 9143–9158 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Preciado López, M. et al. Actin–microtubule coordination at growing microtubule ends. Nat. Commun. 5, 4778 (2014).

    PubMed  Google Scholar 

  112. Maekawa, H. & Schiebel, E. Cdk1–Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev. 18, 1709–1724 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    CAS  PubMed  Google Scholar 

  114. Mattie, F. J. et al. Directed microtubule growth, +TIPs, and kinesin-2 are required for uniform microtubule polarity in dendrites. Curr. Biol. 20, 2169–2177 (2010). This study demonstrates how motor-based microtubule guidance supports the maintenance of oriented microtubule arrays in neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Doodhi, H., Katrukha, E. A., Kapitein, L. C. & Akhmanova, A. Mechanical and geometrical constraints control kinesin-based microtubule guidance. Curr. Biol. 24, 322–328 (2014).

    CAS  PubMed  Google Scholar 

  116. Chen, Y., Rolls, M. M. & Hancock, W. O. An EB1–kinesin complex is sufficient to steer microtubule growth in vitro. Curr. Biol. 24, 316–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mana-Capelli, S., McLean, J. R., Chen, C. T., Gould, K. L. & McCollum, D. The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning. Mol. Biol. Cell 23, 4592–4600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Braun, M. et al. The human kinesin-14 HSET tracks the tips of growing microtubules in vitro. Cytoskeleton (Hoboken) 70, 515–521 (2013).

    CAS  Google Scholar 

  119. Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229–240 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Janson, M. E. et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357–368 (2007).

    CAS  PubMed  Google Scholar 

  121. Ambrose, J. C., Li, W., Marcus, A., Ma, H. & Cyr, R. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584–1592 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hepperla, A. J. et al. Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell 31, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003).

    CAS  PubMed  Google Scholar 

  125. Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol. 16, 106–112 (2004).

    CAS  PubMed  Google Scholar 

  126. Pfister, A. S., Hadjihannas, M. V., Rohrig, W., Schambony, A. & Behrens, J. Amer2 protein interacts with EB1 protein and adenomatous polyposis coli (APC) and controls microtubule stability and cell migration. J. Biol. Chem. 287, 35333–35340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Stehbens, S. J. et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat. Cell Biol. 16, 561–573 (2014). This paper shows how cortical microtubule capture contributes to the regulation of focal adhesion turnover by controlling vesicle transport.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Basu, S. et al. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26, 938–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S. & Holzbaur, E. L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190–13203 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    CAS  PubMed  Google Scholar 

  131. van Haren, J. et al. Dynamic microtubules catalyze formation of navigator–TRIO complexes to regulate neurite extension. Curr. Biol. 24, 1778–1785 (2014).

    CAS  PubMed  Google Scholar 

  132. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kollman, J. M., Merdes, A., Mourey, L. & Agard, D. A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358–364 (2000).

    CAS  PubMed  Google Scholar 

  135. Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  137. Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).

    CAS  PubMed  Google Scholar 

  138. Lechler, T. & Fuchs, E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147–154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wieczorek, M., Bechstedt, S., Chaaban, S. & Brouhard, G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17, 907–916 (2015).

    CAS  PubMed  Google Scholar 

  141. Hendershott, M. C. & Vale, R. D. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. Proc. Natl Acad. Sci. USA 111, 5860–5865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295–309 (2014). References 141 and 142 demonstrate that CAMSAP and Patronin specifically decorate and stabilize growing microtubule minus ends.

    CAS  PubMed  Google Scholar 

  143. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008).

    CAS  PubMed  Google Scholar 

  144. Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tanaka, N., Meng, W., Nagae, S. & Takeichi, M. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc. Natl Acad. Sci. USA 109, 20029–20034 (2012). This paper shows that CAMSAPs regulate the formation of non-centrosomal microtubules in a γ-TURC-independent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yau, K. W. et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82, 1058–1073 (2014).

    CAS  PubMed  Google Scholar 

  147. Richardson, C. E. et al. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife 3, e01498 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Marcette, J. D., Chen, J. J. & Nonet, M. L. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. eLife 3, e01637 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Chuang, M. et al. The microtubule minus-end-binding protein Patronin/PTRN-1 is required for axon regeneration in C. elegans. Cell Rep. 9, 874–883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Dammermann, A., Desai, A. & Oegema, K. The minus end in sight. Curr. Biol. 13, R614–R624 (2003).

    CAS  PubMed  Google Scholar 

  151. Wang, H., Brust-Mascher, I., Civelekoglu-Scholey, G. & Scholey, J. M. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J. Cell Biol. 203, 35–46 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, D. et al. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nat. Cell Biol. 13, 361–370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Syred, H. M., Welburn, J., Rappsilber, J. & Ohkura, H. Cell cycle regulation of microtubule interactomes: multi-layered regulation is critical for the interphase/mitosis transition. Mol. Cell. Proteomics 12, 3135–3147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Meunier, S. & Vernos, I. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat. Cell Biol. 13, 1406–1414 (2011).

    CAS  PubMed  Google Scholar 

  155. Hamada, T. Microtubule organization and microtubule-associated proteins in plant cells. Int. Rev. Cell Mol. Biol. 312, 1–52 (2014).

    CAS  PubMed  Google Scholar 

  156. Dumontet, C. & Jordan, M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9, 790–803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015). This study introduces microtubule-destabilizing agents that can be manipulated in cells by visible light to optically control microtubule dynamics.

    CAS  PubMed  Google Scholar 

  158. Mohan, R. et al. End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proc. Natl Acad. Sci. USA 110, 8900–8905 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Berges, R. et al. End-binding 1 protein overexpression correlates with glioblastoma progression and sensitizes to Vinca-alkaloids in vitro and in vivo. Oncotarget 5, 12769–12787 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Thomas, G. E., Sreeja, J. S., Gireesh, K. K., Gupta, H. & Manna, T. K. +TIP EB1 downregulates paclitaxel-induced proliferation inhibition and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules. Int. J. Oncol. 46, 133–146 (2015).

    CAS  PubMed  Google Scholar 

  161. Lesniewska, K., Warbrick, E. & Ohkura, H. Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics. Mol. Biol. Cell 25, 1025–1036 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. Weng, J. H. et al. Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration. Nat. Chem. Biol. 9, 636–642 (2013).

    CAS  PubMed  Google Scholar 

  163. Drummond, D. R. et al. Purification of tubulin from the fission yeast Schizosaccharomyces pombe. Methods Mol. Biol. 777, 29–55 (2011).

    CAS  PubMed  Google Scholar 

  164. Sirajuddin, M., Rice, L. M. & Vale, R. D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Johnson, V., Ayaz, P., Huddleston, P. & Rice, L. M. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50, 8636–8644 (2011).

    CAS  PubMed  Google Scholar 

  166. Minoura, I. et al. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587, 3450–3455 (2013). References 165 and 166 describe the recombinant production and purification of tubulin variants.

    CAS  PubMed  Google Scholar 

  167. Fourniol, F. J. et al. Micropattern-guided assembly of overlapping pairs of dynamic microtubules. Methods Enzymol. 540, 339–360 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Prota, A. E. et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 339, 587–590 (2013).

    CAS  PubMed  Google Scholar 

  169. Prota, A. E. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew. Chem. Int. Ed. Engl. 53, 1621–1625 (2014).

    CAS  PubMed  Google Scholar 

  170. Ravelli, R. B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004). This study describes the structural basis of the curved-to-straight tubulin conformational transition and the mechanism of action of the microtubule-destabilizing agent colchicine.

    CAS  PubMed  Google Scholar 

  171. Skoufias, D. A. & Wilson, L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin–colchicine complexes. Biochemistry 31, 738–746 (1992).

    CAS  PubMed  Google Scholar 

  172. Gigant, B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519–522 (2005).

    CAS  PubMed  Google Scholar 

  173. Prota, A. E. et al. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl Acad. Sci. USA 111, 13817–13821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Nawrotek, A., Knossow, M. & Gigant, B. The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J. Mol. Biol. 412, 35–42 (2011).

    CAS  PubMed  Google Scholar 

  175. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    CAS  PubMed  Google Scholar 

  176. Nogales, E., Downing, K. H., Amos, L. A. & Lowe, J. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5, 451–458 (1998).

    CAS  PubMed  Google Scholar 

  177. Honnappa, S., John, C. M., Kostrewa, D., Winkler, F. K. & Steinmetz, M. O. Structural insights into the EB1–APC interaction. EMBO J. 24, 261–269 (2005).

    CAS  PubMed  Google Scholar 

  178. Steinmetz, M. O. & Akhmanova, A. Capturing protein tails by CAP-Gly domains. Trends Biochem. Sci. 33, 535–545 (2008).

    CAS  PubMed  Google Scholar 

  179. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localisation. J. Cell Biol. 166, 1003–1014 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol. 16, 2259–2264 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Natacha Olieric for help preparing the illustrations, to Shasha Hua and Renu Mohan for preparing original fluorescence images. A.A. is supported by a European Research Council (ERC) Synergy grant and grants from the Netherlands Organization for Scientific Research, and M.O.S. is supported by grants from the Swiss National Science Foundation and the Swiss SystemsX.ch initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Akhmanova or Michel O. Steinmetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

Electron Microscopy Data Bank

EMD-6347

RCSB Protein Data Bank

3C0I

3JAK

4TV8

Glossary

Neurons

Cells that process and transmit information through electrical and chemical signals.

Protofilaments

Straight rows of longitudinally aligned tubulin dimers in microtubules.

Microtubule plus end

The dynamic end of a microtubule, which alternates in vivo between periods of growth and shrinkage and is often directed towards the cell surface. Microtubule plus ends grow quickly in vitro.

Microtubule minus end

The less-dynamic end of a microtubule. Microtubule minus ends do grow, albeit slowly. In cells, they are often stabilized (for example, by attachment to the centrosome) or function as sites of microtubule depolymerization. Microtubule minus ends grow slowly in vitro.

Catastrophe

The transition of a microtubule from growth to shortening.

Rescues

Transitions of microtubules from shortening to growth.

GTP islands

GTP-bound tubulin dimer patches in the microtubule shaft.

Kinesin

A microtubule-based molecular motor, often directed towards the plus ends of microtubules.

Motor processivity

The ability of motors to move long distances along a cytoskeletal filament without dissociation.

Axonemal microtubules

The central components of axonemes. Numerous eukaryotic cells carry whip-like appendages (cilia or eukaryotic flagella), the inner cores of which consist of a microtubule-based structure called the axoneme. The axoneme contains axonemal microtubules, which function as the 'skeleton' of these cell protrusions, giving them support, enabling transport and, in some cases, causing bending motion.

Kinetochores

Specialized regions on chromosomes that are connected to microtubules and motor proteins during cell division in eukaryotes. Kinetochores function in the separation of chromosome pairs.

Cytoskeleton-associated protein Gly-rich domain

(CAP-Gly domain). An 70-residue protein domain that is characterized by several Gly residues, which are involved in shaping the loop regions of the globular fold. CAP-Gly domains contain a unique hydrophobic cavity that encompasses the highly conserved GKNDG sequence motif responsible for targeting CAP-Gly domains to the carboxy-terminal EEY/F motifs of γ-tubulin, end-binding protein, cytoplasmic linker protein 170 and SLAIN.

Dynein

A large, minus-end-directed, multisubunit microtubule motor protein that is involved in several cellular processes, including cell division, migration and intracellular transport.

Calponin homology domain

(CH domain). An 100-residue actin- or microtubule-binding domain that is common to many actin-binding proteins, including cytoskeletal and signalling proteins, and microtubule-associated proteins such as end-binding proteins, calponin-homology and microtubule-associated protein (CLAMP) and highly expressed in cancer protein 1 (HEC1).

Coiled-coil domain

A protein structural motif that mediates subunit oligomerization. Coiled-coils contain between two and five α-helices that twist around each other to form a supercoil.

Carboxy-terminal EEY/F motif

A highly specific and conserved sequence motif found at the C termini of α-tubulin, end-binding proteins, cytoplasmic linker protein 170 and SLAIN. The EEY/F motif is the target of cytoskeleton-associated protein Gly-rich domains.

EB homology domain

(EBH domain). An 50-amino-acid domain found at the carboxyl termini of end-binding proteins. It constitutes of a pair of helix–loop–helix segments forming an antiparallel four-helix bundle. The highly conserved residues of the EBH domain form a surface patch that contains a deep hydrophobic cavity, which serves as an interaction site for binding partners.

TOG domains

HEAT (Huntingtin, elongation factor 3, protein phosphatase 2A and target of rapamycin1) repeat-containing tubulin-binding domains named after their discovery in the human microtubule-associated protein ch-TOG (colonic and hepatic tumour-overexpressed gene).

Doublecortin domains

(DC domains). Regions found in the amino terminus of the protein doublecortin that consist of tandem repeated copies of an approximately 80-amino-acid sequence region.

Nuclear division cycle 80 complex

(NDC80 complex). A multisubunit protein complex that mediates the attachment of microtubule plus ends to kinetochores.

DUO1 and MPS1-interacting 1 complex

(DAM1 complex). A multisubunit protein complex (also known as the DASH complex) that is involved in kinetochore–microtubule attachments in yeast and can form rings around microtubules. It may provide a dynamic linkage at depolymerizing or polymerizing microtubule ends for force generation.

SxIP motif

An amino acid sequence motif of Ser-any amino acid-Ile-Pro, embedded in an intrinsically disordered positively charged sequence region that is found in many microtubule plus-end-tracking proteins. The SxIP motif is specifically recognized by the EB homology domain of EBs.

Kinases

Enzymes that catalyse the transfer of phosphate groups from ATP to specific substrates, such as particular amino acid residues in proteins. This process is termed phosphorylation.

Actin

A protein that forms microfilaments in most cells. Actin filaments represent one of the three cytoskeletal filament systems besides microtubules and intermediate filaments.

Myosin V

A subclass of the myosin family of actin-dependent motor proteins that is required for the transport of vesicles or mRNA cargo.

Phosphoinositide

A phosphorylated form of phosphatidylinositol, a member of a family of lipids that has important roles in lipid signalling, cell signalling and membrane trafficking.

Focal adhesions

Integrin-mediated cell–substrate adhesion structures that anchor the ends of actin filaments (also known as stress fibres) and mediate strong attachments to substrates. They also function as integrin signalling platforms.

Neuromuscular junctions

Structures that connect the nervous system to the muscular system through synapses between nerve fibres and muscle cells. In vertebrates, the small-molecule neurotransmitter acetylcholine is released by the neuron and binds acetylcholine receptors in the plasma membrane of the muscle cell.

Retrograde transport

The movement of molecules or organelles inwards, away from the plasma membrane and towards the cell body. Often mediated by the microtubule minus-end-directed motor dynein.

Guanine nucleotide exchange factors

(GEFs). Proteins that facilitate the exchange of GDP for GTP in the nucleotide-binding pocket of GTP-binding proteins.

Neurites

Projections extending from the cell body of a neuronal cell. In differentiated neurons, neurites are distinguished into axons (projections that transmit signals) and dendrites (projections that receive signals).

Endoplasmic reticulum

(ER). A membrane organelle in eukaryotic cells that has important functions in protein synthesis, folding and processing, as well as in lipid and sugar metabolism and calcium storage. It forms an interconnected network of flattened, membrane-enclosed sacs or tubes.

γ-tubulin ring complex

(γ-TURC). A multisubunit protein complex that binds to microtubule minus ends and nucleates microtubules, for example, at the centrosome. The complex contains a special isoform of tubulin, γ-tubulin.

Centrosomes

Organelles that form the main microtubule-organizing centre (MTOC) of most animal cells. They consist of cylindrical, microtubule-based structures called centrioles and their surrounding material, which can nucleate and anchor microtubules.

CKK domain

(Calmodulin-regulated spectrin-associated protein (CAMSAP), KIAA1078 and KIAA1543 domain). A domain that occurs at the carboxyl termini of the CAMSAPs and Patronin. CKK domains are thought to bind microtubules.

Poleward microtubule flux

The process of translocation of spindle microtubules towards spindle poles, coupled to the depolymerization of their minus ends.

Peptide aptamers

Small proteins containing a 10–25-amino-acid peptide that binds with high specificity and affinity to a molecular target.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmanova, A., Steinmetz, M. Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16, 711–726 (2015). https://doi.org/10.1038/nrm4084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing