Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Centrosome function and assembly in animal cells

Key Points

  • Centrosomes are not essential for cell division in most animal cells, although they contribute to the efficiency of mitotic spindle assembly.

  • Centrosome loss is tolerated surprisingly well in fly cells, but it normally induces a p53-dependent block to proliferation or apoptosis in vertebrate cells.

  • Centrosome dysfunction in humans may promote cancer by increasing levels of chromosomal instability and/or the metastatic potential of cancer cells, although strong genetic evidence for this link is lacking.

  • Strong genetic evidence links centrosome dysfunction to microcephaly and primordial dwarfism in humans, although the reasons for this link are unclear.

  • There have been dramatic recent advances in our molecular understanding of how centrioles and centrosomes assemble.

  • In flies and in worms, the SPD2 and Polo or Polo-like kinase 1 (PLK1) proteins cooperate with Cnn (in flies) or SPD-5 (in worms), to drive the assembly of a scaffold structure around the mother centriole during mitosis that functions to recruit other proteins to the mitotic centrosome.

Abstract

It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centriole, centrosome and cilium behaviour during the cell cycle.
Figure 2: Consequences of a lack of centrosomes on cell division and proliferation in flies and in mice.
Figure 3: A model of the molecular pathways of centriole and mitotic centrosome assembly in worms, flies and humans.
Figure 4: A model of mitotic pericentriolar material (PCM) assembly in flies.

Similar content being viewed by others

References

  1. Bornens, M. The centrosome in cells and organisms. Science 335, 422–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kellogg, D. R., Moritz, M. & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639–674 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Azimzadeh, J. Exploring the evolutionary history of centrosomes. Philos. Trans. R. Soc. Lond. B 369, 20130453 (2014).

    Article  CAS  Google Scholar 

  4. Arquint, C., Gabryjonczyk, A.-M. & Nigg, E. A. Centrosomes as signalling centres. Philos. Trans. R. Soc. Lond. B 369, 20130464 (2014).

    Article  CAS  Google Scholar 

  5. Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121 (Suppl. 1), 1–84 (2008).

    Article  PubMed  Google Scholar 

  6. Nachury, M. V. How do cilia organize signalling cascades? Philos. Trans. R. Soc. Lond. B 369, 20130465 (2014).

    Article  CAS  Google Scholar 

  7. Fry, A. M., Leaper, M. J. & Bayliss, R. The primary cilium: guardian of organ development and homeostasis. Organogenesis 10, 62–68 (2014).

    Article  PubMed  Google Scholar 

  8. Kurkowiak, M., Ziętkiewicz, E. & Witt, M. Recent advances in primary ciliary dyskinesia genetics. J. Med. Genet. 52, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Alves-Cruzeiro, J. M., Nogales-Cadenas, R. & Pascual-Montano, A. D. CentrosomeDB: a new generation of the centrosomal proteins database for Human and Drosophila melanogaster. Nucleic Acids Res. 42, D430–D436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413–419 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. McCollum, D. & Theurkauf, W. Centrosomes in cellular regulation. Annu. Rev. Cell Dev. Biol. 21, 411–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Nigg, E. A. E. & Stearns, T. T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rappaport, R. Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81–89 (1961).

    Article  CAS  PubMed  Google Scholar 

  16. Dumont, J. & Desai, A. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol. 22, 241–249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masoud, K., Herzog, E., Chabouté, M.-E. & Schmit, A.-C. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. Plant J. 75, 245–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O'Connell, C. B. & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717–1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Goshima, G., Mayer, M., Zhang, N., Stuurman, N. & Vale, R. D. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421–429 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goshima, G. & Kimura, A. New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr. Opin. Cell Biol. 22, 6–6 (2010).

    Article  CAS  Google Scholar 

  25. Sánchez-Huertas, C. & Lüders, J. The augmin connection in the geometry of microtubule networks. Curr. Biol. 25, R294–R299 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Lawo, S. S. et al. HAUS, the 8-subunit human augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19, 11–11 (2009).

    Article  CAS  Google Scholar 

  27. Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Baumbach, J., Novak, Z. A., Raff, J. W. & Wainman, A. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo. PLoS Genet. 11, e1005261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moutinho-Pereira, S., Debec, A. & Maiato, H. Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells. Mol. Biol. Cell 20, 2796–2808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kleylein-Sohn, J. et al. Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J. Cell Sci. 125, 5391–5402 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hayward, D., Metz, J., Pellacani, C. & Wakefield, J. G. Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation. Dev. Cell 28, 81–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szöllösi, A., Ris, H., Szöllösi, D. & Debec, A. A centriole-free Drosophila cell line. A high voltage EM study. Eur. J. Cell Biol. 40, 100–104 (1986).

    PubMed  Google Scholar 

  33. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615–628 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sir, J.-H. et al. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203, 747–756 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Stevens, N. R., Raposo, A. A., Basto, R., St Johnston, D. & Raff, J. W. From stem cell to embryo without centrioles. Curr. Biol. 17, 1498–1503 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varmark, H. et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 17, 1735–1745 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Baumbach, J., Levesque, M. P. & Raff, J. W. Centrosome loss or amplification does not dramatically perturb global gene expression in Drosophila. Biol. Open 1, 983–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Azimzadeh, J., Wong, M. L., Downhour, D. M., Alvarado, A. S. & Marshall, W. F. Centrosome loss in the evolution of planarians. Science 335, 461–463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poulton, J. S., Cuningham, J. C. & Peifer, M. Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev. Cell 30, 731–745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547–1550 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Habedanck, R., Stierhof, Y.-D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Dobbelaere, J. et al. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol. 6, e224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bazzi, H. & Anderson, K. V. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl Acad. Sci. USA 111, E1491–E1500 (2014). The authors examine mouse embryo development in the absence of centrosomes and show that centrosome loss gradually activates a p53-dependent apoptosis programme.

    Article  CAS  PubMed  Google Scholar 

  50. David, A. et al. Lack of centrioles and primary cilia in STIL−/− mouse embryos. Cell Cycle 13, 2859–2868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Insolera, R., Bazzi, H., Shao, W., Anderson, K. V. & Shi, S.-H. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci. 17, 1528–1535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Izquierdo, D., Wang, W.-J., Uryu, K. & Tsou, M.-F. B. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep. 8, 957–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155–1160 (2015). The authors develop the drug centrinone that very specifically inhibits PLK4, allowing them to analyse the effect of reversible centriole and centrosome depletion in cultured cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lambrus, B. G. et al. p53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210, 63–77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zyss, D. & Gergely, F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 19, 334–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Chan, J. Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122–1144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Godinho, S. A. & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B 369, 20130467 (2014).

    Article  CAS  Google Scholar 

  58. Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Castellanos, E. E., Dominguez, P. P. & Gonzalez, C. C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209–1214 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J. & Salisbury, J. L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl Acad. Sci. USA 95, 2950–2955 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978–1983 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  63. Vitre, B. D. & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M. & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kwon, M. M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ganem, N. J. N., Godinho, S. A. S. & Pellman, D. D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marthiens, V. et al. Centrosome amplification causes microcephaly. Nat. Cell Biol. 15, 731–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Holland, A. J. et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684–2689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ganem, N. J. et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833–848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nat. Rev. Cancer 7, 911–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Godinho, S. A. et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167–171 (2014). The authors provide intriguing evidence that centrosome amplification can increase the metastatic potential of cancer cells in 3D tissue models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salisbury, J. L., D'Assoro, A. B. & Lingle, W. L. Centrosome amplification and the origin of chromosomal instability in breast cancer. J. Mammary Gland Biol. Neoplasia 9, 275–283 (2004).

    Article  PubMed  Google Scholar 

  76. Thornton, G. K. & Woods, C. G. Primary microcephaly: do all roads lead to Rome? Trends Genet. 25, 501–510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Megraw, T. L., Sharkey, J. T. & Nowakowski, R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 21, 470–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barbelanne, M. & Tsang, W. Y. Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed. Res. Int. 2014, 547986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chavali, P. L., Pütz, M. & Gergely, F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos. Trans. R. Soc. Lond. B 369, 20130468 (2014).

    Article  CAS  Google Scholar 

  80. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Buchman, J. J. et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Lesage, B., Gutierrez, I., Martí, E. & González, C. Neural stem cells: the need for a proper orientation. Curr. Opin. Genet. Dev. 20, 5–5 (2010).

    Article  CAS  Google Scholar 

  83. Taverna, E., Götz, M. & Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Riparbelli, M. G. & Callaini, G. Male gametogenesis without centrioles. Dev. Biol. 349, 427–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Klingseisen, A. & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Müller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006). A classic paper that defined the centriole-assembly pathway in worm embryos, thus setting the paradigm for the field.

    Article  CAS  PubMed  Google Scholar 

  88. Delattre, M., Canard, C. & Gönczy, P. Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844–1849 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Gönczy, P. P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Jana, S. C., Marteil, G. & Bettencourt-Dias, M. Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr. Opin. Cell Biol. 26, 96–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Fırat-Karalar, E. N. & Stearns, T. The centriole duplication cycle. Philos. Trans. R. Soc. Lond. B 369, 20130460 (2014).

    Article  CAS  Google Scholar 

  92. Hirono, M. Cartwheel assembly. Philos. Trans. R. Soc. Lond. B 369, 20130458 (2014).

    Article  CAS  Google Scholar 

  93. O'Connell, K. F. et al. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sonnen, K. F., Schermelleh, L., Leonhardt, H. & Nigg, E. A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1, 965–976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J. & O'Connell, K. F. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Pelletier, L. et al. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Blachon, S. et al. Drosophila asterless and vertebrate Cep152 are orthologs essential for centriole duplication. Genetics 180, 2081–2094 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sonnen, K. F., Gabryjonczyk, A. M., Anselm, E., Stierhof, Y. D. & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126, 3223–3233 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, T.-S. et al. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl Acad. Sci. USA 110, E4849–E4857 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Lettman, M. M. et al. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell 25, 284–298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dzhindzhev, N. S. et al. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526–2532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ohta, M. et al. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kratz, A.-S., Bärenz, F., Richter, K. T. & Hoffmann, I. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4, 370–377 (2015). References 104–106 establish that the STIL or Ana2 protein is a genuine in vivo target of the PLK4 or Sak kinase in humans and in flies, respectively, and that this phosphorylation promotes centriole assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van Breugel, M. et al. Structures of SAS-6 suggest its organization in centrioles. Science 331, 1196–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364–375 (2011). References 107–108 reveal how the homo-oligomerization properties of Sas-6 help to set the ninefold symmetry of the cartwheel, and therefore the centriole.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang, C.-J. C., Fu, R.-H., Wu, K.-S., Hsu, W.-B. & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Tang, C.-J. C. et al. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30, 4790–4804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Matsuura, K., Lefebvre, P. A., Kamiya, R. & Hirono, M. Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165, 663–671 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hiraki, M., Nakazawa, Y., Kamiya, R. & Hirono, M. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17, 1778–1783 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Lin, Y.-C. et al. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J. 32, 1141–1154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mottier-Pavie, V. & Megraw, T. L. Drosophila Bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Mol. Biol. Cell 20, 2605–2614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carvalho-Santos, Z. Z. et al. BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair. Dev. Cell 23, 412–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Roque, H. et al. Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J. Cell Sci. 125, 5881–5886 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Inanç, B. et al. Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells. Mol. Biol. Cell 24, 2645–2654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Novak, Z. A., Conduit, P. T., Wainman, A. & Raff, J. W. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr. Biol. 24, 1276–1282 (2014). The authors show that in flies, Sas4 helps to recruit Asl to new daughter centrioles, but only after centrioles disengage at the end of mitosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hilbert, M. et al. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. Proc. Natl Acad. Sci. USA 110, 11373–11378 (2013).

    Article  PubMed  Google Scholar 

  120. van Breugel, M., Wilcken, R., McLaughlin, S. H., Rutherford, T. J. & Johnson, C. M. Structure of the SAS-6 cartwheel hub from Leishmania major. eLife 3, e01812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cottee, M. A. et al. The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies. eLife 4, e07236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rogala, K. B. et al. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. eLife 4, e07410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Park, S.-Y. et al. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat. Struct. Mol. Biol. 21, 696–703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shimanovskaya, E. et al. Structure of the C. elegans ZYG-1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases. Structure 22, 1090–1104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cottee, M. A. et al. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2, e01071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hatzopoulos, G. N. et al. Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21, 2069–2077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Arquint, C. et al. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 4, e07888 (2015).

    Article  PubMed Central  Google Scholar 

  128. Moyer, T. C., Clutario, K. M., Lambrus, B. G., Daggubati, V. & Holland, A. J. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209, 863–878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chang, J., Cizmecioglu, O., Hoffmann, I. & Rhee, K. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 29, 2395–2406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bahtz, R. et al. GCP6 is a substrate of Plk4 and required for centriole duplication. J. Cell Sci. 125, 486–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Rogers, G. C., Rusan, N. M., Peifer, M. & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163–3178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bacallao, R. et al. The subcellular organization of Madin–Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109, 2817–2832 (1989).

    Article  CAS  PubMed  Google Scholar 

  133. Tucker, J. B. et al. Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. J. Anat. 192, 119–130 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Brodu, V., Baffet, A. D., Le Droguen, P.-M., Casanova, J. & Guichet, A. A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev. Cell 18, 790–801 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Feldman, J. L. & Priess, J. R. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr. Biol. 22, 575–582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tassin, A. M., Maro, B. & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35–46 (1985).

    Article  CAS  PubMed  Google Scholar 

  137. Srsen, V., Fant, X., Heald, R., Rabouille, C. & Merdes, A. Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biol. 10, 28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Zhu, F. et al. The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Haren, L., Stearns, T. & Lüders, J. Plk1-dependent recruitment of γ-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 4, e5976 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Januschke, J. et al. Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat. Cell Biol. 15, 241–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Fu, J. & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bärenz, F., Mayilo, D. & Gruss, O. J. Centriolar satellites: busy orbits around the centrosome. Eur. J. Cell Biol. 90, 983–989 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Lopes, C. A. M. et al. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J. Cell Sci. 124, 600–612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Palazzo, R. E., Vogel, J. M., Schnackenberg, B. J., Hull, D. R. & Wu, X. Centrosome maturation. Curr. Top. Dev. Biol. 49, 449–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Mahen, R. & Venkitaraman, A. R. Pattern formation in centrosome assembly. Curr. Opin. Cell Biol. 24, 14–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Mennella, V., Agard, D. A., Huang, B. & Pelletier, L. Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol. 24, 188–197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Woodruff, J. B., Wueseke, O. & Hyman, A. A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B 369, 20130459 (2014).

    Article  CAS  Google Scholar 

  152. Lee, K. & Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093–1101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Conduit, P. T. et al. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28, 659–669 (2014). The authors show how Polo phosphorylates Cnn specifically at centrosomes to allow Cnn to assemble into a scaffold that can recruit other PCM proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oshimori, N., Ohsugi, M. & Yamamoto, T. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat. Cell Biol. 8, 1095–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Kinoshita, K. et al. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 170, 1047–1055 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Barros, T. P., Kinoshita, K., Hyman, A. A. & Raff, J. W. Aurora A activates D-TACC–Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J. Cell Biol. 170, 1039–1046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sdelci, S. et al. Nek9 phosphorylation of NEDD1/GCP-WD contributes to Plk1 control of γ-tubulin recruitment to the mitotic centrosome. Curr. Biol. 22, 1516–1523 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Gomez-Ferreria, M. A. et al. Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly. J. Cell Sci. 125, 3745–3751 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N. & Agard, D. A. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kollman, J. M. et al. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132–137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin, T.-C. et al. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 3, e02208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lin, T.-C., Neuner, A. & Schiebel, E. Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296–307 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Schnackenberg, B. J., Khodjakov, A., Rieder, C. L. & Palazzo, R. E. The disassembly and reassembly of functional centrosomes in vitro. Proc. Natl Acad. Sci. USA 95, 9295–9300 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Moritz, M., Zheng, Y., Alberts, B. M. & Oegema, K. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775–786 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Conduit, P. T. et al. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3, e03399 (2014). The authors show that Spd2 and Cnn cooperate to drive mitotic centrosome assembly in flies: in the absence of both proteins, centrosome maturation is abolished.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Woodruff, J. B. et al. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348, 808–812 (2015). The authors describe an important first step in the reconstitution of centrosome assembly in vitro , showing that purified SPD-5 protein can assemble into a network, and that this is regulated by SPD-2 and PLK-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839 (1999).

    CAS  PubMed  Google Scholar 

  169. Lucas, E. P. & Raff, J. W. Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin. J. Cell Biol. 178, 725–732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Martinez-Campos, M., Basto, R., Baker, J., Kernan, M. & Raff, J. W. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 165, 673–683 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Richens, J. H. et al. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol. Open 4, 1052–1056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lerit, D. A. et al. Interphase centrosome organization by the PLP–Cnn scaffold is required for centrosome function. J. Cell Biol. 210, 79–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sunkel, C. E., Gomes, R., Sampaio, P., Perdigao, J. & Gonzalez, C. γ-tubulin is required for the structure and function of the microtubule organizing centre in Drosophila neuroblasts. EMBO J. 14, 28–36 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell Biol. 157, 591–602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gopalakrishnan, J. et al. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat. Commun. 2, 359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gopalakrishnan, J. et al. Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment. Nat. Cell Biol. 14, 865–873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Wueseke, O. et al. The Caenorhabditis elegans pericentriolar material components SPD-2 and SPD-5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Mol. Biol. Cell 25, 2984–2992 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Conduit, P. T. & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187–2192 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Kim, S. & Rhee, K. Importance of the CEP215–pericentrin interaction for centrosome maturation during mitosis. PLoS ONE 9, e87016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gomez-Ferreria, M. A. et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Joukov, V., Walter, J. C. & De Nicolo, A. The Cep192-organized Aurora A–Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55, 578–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Barr, A. R., Kilmartin, J. V. & Gergely, F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J. Cell Biol. 189, 23–39 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Choi, Y.-K., Liu, P., Sze, S. K., Dai, C. & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fong, K.-W., Choi, Y.-K., Rattner, J. B. & Qi, R. Z. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Mol. Biol. Cell 19, 115–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Terada, Y., Uetake, Y. & Kuriyama, R. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 162, 757–763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Meng, L. et al. Bimodal interaction of mammalian Polo-like kinase 1 and a centrosomal scaffold, Cep192, in the regulation of bipolar spindle formation. Mol Cell. Biol. http://dx.doi.org/10.1128/MCB.00068-15 (2015).

  190. Barrera, J. A. et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lee, K. & Rhee, K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11, 2476–2485 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Pagan, J. K. et al. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat. Cell Biol. 17, 31–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Graser, S. S., Stierhof, Y.-D. Y. & Nigg, E. A. E. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 120, 4321–4331 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Khodjakov, A. & Rieder, C. L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hames, R. S. et al. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol. Biol. Cell 16, 1711–1724 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Conduit, P. T. et al. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 20, 2178–2186 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Conduit, P. T. & Raff, J. W. Different Drosophila cell types exhibit important differences in mitotic centrosome assembly dynamics. Curr. Biol. 25, R650–R651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zwicker, D., Decker, M., Jaensch, S., Hyman, A. A. & Julicher, F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl Acad. Sci. 111, E2636–E2645 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Laos, T., Cabral, G. & Dammermann, A. Isotropic incorporation of SPD-5 underlies centrosome assembly in C. elegans. Curr. Biol. 25, R648–R649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Agircan, F. G., Schiebel, E. & Mardin, B. R. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B 369, 20130461 (2014).

    Article  CAS  Google Scholar 

  201. Tsou, M.-F. B. & Stearns, T. Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Megraw, T. L., Kilaru, S., Turner, F. R. & Kaufman, T. C. The centrosome is a dynamic structure that ejects PCM flares. J. Cell Sci. 115, 4707–4718 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Hisham Bazzi and Kathryn Anderson for the mouse embryo images shown in Figure 2, and several colleagues who communicated unpublished data and provided helpful discussion. The work in the author's labs is funded by a Wellcome Trust Senior Investigator Award (104575) (AW and JWR), a Wellcome Trust Strategic Award to Micron Oxford (091911) (AW) and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and The Royal Society (105653) (PTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan W. Raff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Molecular motors

Proteins containing a 'motor' domain that allows them to move along microtubules or actin filaments.

Syncytial fly embryos

The initial form of fly embryos, consisting of a giant single cell (a syncytium) in which the nuclei rapidly and synchronously divide.

Wing disc epithelial cells

Epithelial cells in the imaginal disc tissues of fly larvae that will ultimately form most of the adult fly structures (such as the wing and leg) when the larvae pupate.

Transformed cells

Cells that have lost some of their normal growth-control mechanisms (such as cancer cells).

Auxin-inducible degron system

A system that allows appropriately tagged proteins to be rapidly degraded in cultured cells when the plant auxin protein is added to the media.

p38 stress-induced pathway

A pathway by which p38 protein is often activated in cells in response to various forms of cellular stress; it induces responses that protect cells from the stress.

Chromosomal instability

(CIN). A property of many cancer cells, in which the genome of the cell is constantly being rearranged as whole chromosomes or parts of chromosomes are lost or gained during the process of cell division.

Organoid

Populations of cells — formed by division and differentiation when some cell types are grown in culture under specific conditions — that can self-organize to resemble the tissue (for example, brain, liver or gut) from which they were derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conduit, P., Wainman, A. & Raff, J. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16, 611–624 (2015). https://doi.org/10.1038/nrm4062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4062

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer