Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms underlying RB protein function

Key Points

  • RB is a central regulator of cell cycle entry, and its function is disrupted in most human cancers.

  • RB is a modular protein, with three domains, and this structure allows it to function as an adaptor that nucleates several different protein complexes.

  • RB inhibits transcription by E2F transcription factors to prevent cell cycle advancement.

  • Stabilization of p27 expression through RB inhibition of S phase kinase-associated protein 2 (SKP2) inhibits cell cycle progression. Through this mechanism, RB regulates cyclin-dependent kinase (CDK) activity independently of transcription.

  • RB is required for loading condensin II and cohesin complexes onto mitotic chromosomes. In the absence of this function, defective chromosome condensation and congression in mitosis lead to aneuploidy.

  • RB uses an alternative interaction with E2F1 to regulate apoptosis separately from E2F-dependent control of the cell cycle.

Abstract

Inactivation of the RB protein is one of the most fundamental events in cancer. Coming to a molecular understanding of its function in normal cells and how it impedes cancer development has been challenging. Historically, the ability of RB to regulate the cell cycle placed it in a central role in proliferative control, and research focused on RB regulation of the E2F family of transcription factors. Remarkably, several recent studies have found additional tumour-suppressor functions of RB, including alternative roles in the cell cycle, maintenance of genome stability and apoptosis. These advances and new structural studies are combining to define the multifunctionality of RB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RB is a multidomain protein with several distinct protein-binding surfaces.
Figure 2: Regulation of E2Fs by RB.
Figure 3: Transcription-independent regulation of cyclin-dependent kinases by RB.
Figure 4: Regulation of pericentromeric heterochromatin by RB.
Figure 5: Differential regulation of E2F1 in apoptosis.

Similar content being viewed by others

References

  1. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    CAS  PubMed  Google Scholar 

  2. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    CAS  Google Scholar 

  3. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    CAS  PubMed  Google Scholar 

  4. van den Heuvel, S. & Dyson, N. J. Conserved functions of the pRB and E2F families. Nature Rev. Mol. Cell Biol. 9, 713–724 (2008).

    CAS  Google Scholar 

  5. Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Rev. Cancer 8, 671–682 (2008).

    CAS  Google Scholar 

  6. Manning, A. L. & Dyson, N. J. RB: mitotic implications of a tumour suppressor. Nature Rev. Cancer 12, 20–226 (2012).

    Google Scholar 

  7. MacPherson, D. & Dyer, M. A. Retinoblastoma: from the two-hit hypothesis to targeted chemotherapy. Cancer Res. 67, 7547–7550 (2007).

    CAS  PubMed  Google Scholar 

  8. Knudsen, E. S. & Knudsen, K. E. Tailoring to RB: tumour suppressor status and therapeutic response. Nature Rev. Cancer 8, 714–724 (2008).

    CAS  Google Scholar 

  9. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    CAS  PubMed  Google Scholar 

  10. Lee, J.-O., Russo, A. A. & Pavletich, N. P. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865 (1998).

    CAS  PubMed  Google Scholar 

  11. Hassler, M. et al. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol. Cell 28, 371–385 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubin, S. M., Gall, A. L., Zheng, N. & Pavletich, N. P. Structure of the Rb C-terminal domain bound to E2F1–DP1: a mechanism for phosphorylation-induced E2F release. Cell 123, 1093–1106 (2005).

    CAS  PubMed  Google Scholar 

  13. Burke, J. R., Deshong, A. J., Pelton, J. G. & Rubin, S. M. Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J. Biol. Chem. 285, 16286–16293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Burke, J. R., Hura, G. L. & Rubin, S. M. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control. Genes Dev. 26, 1156–1166 (2012). Examines molecular contacts of phosphates on RB and how they influence the structure of the pocket domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, C., Chang, J. H., Lee, H. S. & Cho, Y. Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Genes Dev. 16, 3199–3212 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao, B. et al. Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc. Natl Acad. Sci. USA 100, 2363–2368 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, H.-Y., Ahn, B.-Y. & Cho, Y. Structural basis for the inactivation of retinoblastoma tumor suppressor by SV40 large T antigen. EMBO J. 20, 295–304 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, J. O., Russo, A. A. & Pavletich, N. P. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865 (1998).

    CAS  PubMed  Google Scholar 

  19. Brehm, A. & Kouzarides, T. Retinoblastoma protein meets chromatin. Trends Biochem. Sci. 24, 142–145 (1999).

    CAS  PubMed  Google Scholar 

  20. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    CAS  PubMed  Google Scholar 

  21. Singh, M., Krajewski, M., Mikolajka, A. & Holak, T. A. Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences. J. Biol. Chem. 280, 37868–37876 (2005).

    CAS  PubMed  Google Scholar 

  22. Binne, U. K. et al. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nature Cell Biol. 9, 225–232 (2007).

    CAS  PubMed  Google Scholar 

  23. Longworth, M. S., Herr, A., Ji, J. Y. & Dyson, N. J. RBF1 promotes chromatin condensation through a conserved interaction with the condensin II protein dCAP-D3. Genes Dev. 22, 1011–1024 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fera, D. et al. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. Chem. Biol. 19, 518–528 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dick, F. A. & Dyson, N. pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol. Cell 12, 639–649 (2003).

    CAS  PubMed  Google Scholar 

  26. Julian, L. M., Palander, O., Seifried, L. A., Foster, J. E. & Dick, F. A. Characterization of an E2F1-specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 27, 1572–1579 (2008).

    CAS  PubMed  Google Scholar 

  27. Adams, P. D. et al. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin–CDK complexes. Mol. Cell. Biol. 19, 1068–1080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirschi, A. et al. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nature Struct. Mol. Biol. 17, 1051–1057 (2010). Demonstrates that CDKs and phosphatases compete for access to a common binding site on RB to regulate the phosphorylation status.

    CAS  Google Scholar 

  29. Pan, W., Cox, S., Hoess, R. H. & Grafstrom, R. H. A cyclin D1/cyclin-dependent kinase 4 binding site within the C domain of the retinoblastoma protein. Cancer Res. 61, 2885–2891 (2001).

    CAS  PubMed  Google Scholar 

  30. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    CAS  PubMed  Google Scholar 

  31. Hiebert, S. W., Chellappan, S. P., Horowitz, J. M. & Nevins, J. R. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev. 6, 177–185 (1992).

    CAS  PubMed  Google Scholar 

  32. Qin, X. Q., Chittenden, T., Livingston, D. M. & Kaelin, W. G. Jr. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    CAS  PubMed  Google Scholar 

  33. Rubin, S. M. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem. Sci. 38, 12–19 (2013).

    CAS  PubMed  Google Scholar 

  34. Brown, V. D., Phillips, R. A. & Gallie, B. L. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol. Cell. Biol. 19, 3246–3256 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Knudsen, E. S. & Wang, J. Y. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol. Cell. Biol. 17, 5771–5783 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolupaeva, V. & Janssens, V. PP1 and PP2A phosphatases - cooperating partners in modulating retinoblastoma protein activation. FEBS J. 280, 627–643 (2012).

    PubMed  Google Scholar 

  37. Munro, S., Carr, S. M. & La Thangue, N. B. Diversity within the pRb pathway: is there a code of conduct? Oncogene 31, 4343–4352 (2012).

    CAS  PubMed  Google Scholar 

  38. Knudsen, E. S. & Wang, J. Y. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271, 8313–8320 (1996).

    CAS  PubMed  Google Scholar 

  39. Harbour, J., Luo, R., Dei Santi, A., Postigo, A. & Dean, D. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    CAS  PubMed  Google Scholar 

  40. Isaac, C. E. et al. The retinoblastoma protein regulates pericentric heterochromatin. Mol. Cell. Biol. 26, 3659–3671 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Talluri, S. et al. A G1 checkpoint mediated by the retinoblastoma protein that is dispensable in terminal differentiation but essential for senescence. Mol. Cell. Biol. 30, 948–960 (2010).

    CAS  PubMed  Google Scholar 

  42. Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010). Identifies precise E2F targets for RB-dependent repression in senescence by chromatin immunoprecipitation followed by sequencing and microarray approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dannenberg, J.-H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14, 3037–3050 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bourgo, R. J. et al. RB restricts DNA damage-initiated tumorigenesis through an LXCXE-dependent mechanism of transcriptional control. Mol. Cell 43, 663–672 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Moberg, K., Starz, M. A. & Lees, J. A. E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol. Cell. Biol. 16, 1436–1449 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hurford, R. K. Jr, Cobrinik, D., Lee, M. H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463 (1997).

    CAS  PubMed  Google Scholar 

  48. Cam, H. et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16, 399–411 (2004).

    CAS  PubMed  Google Scholar 

  49. Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol. Cell 26, 539–551 (2007).

    CAS  PubMed  Google Scholar 

  50. Korenjak, M. et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119, 181–193 (2004).

    CAS  PubMed  Google Scholar 

  51. Litovchick, L., Florens, L. A., Swanson, S. K., Washburn, M. P. & DeCaprio, J. A. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev. 25, 801–813 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pilkinton, M., Sandoval, R. & Colamonici, O. R. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene 26, 7535–7543 (2007).

    CAS  PubMed  Google Scholar 

  53. Sadasivam, S., Duan, S. & DeCaprio, J. A. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 26, 474–489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  55. Chen, D. et al. Division and apoptosis of E2f-defient retinal progenitors. Nature 462, 925–929 (2009). Reveals the surprising finding that activator E2F family proteins are dispensable for proliferation in the developing retina.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chong, J. L. et al. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009). Demonstrates the paradox that activator E2Fs are only required for repression and cell cycle exit in the intestine.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ji, P. et al. An Rb–Skp2–p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol. Cell 16, 47–58 (2004).

    CAS  PubMed  Google Scholar 

  58. Gao, D. et al. Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol. Biol. Cell 20, 3305–3316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, H. et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nature Genet. 42, 83–88 (2010). Determines that SKP2 deficiency stabilizes p27 expression and prevents tumorigenesis in Rb+/− mice.

    CAS  PubMed  Google Scholar 

  60. Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C. & Benezra, R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 19, 701–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kabeche, L. & Compton, D. A. Checkpoint-independent stabilization of kinetochore–microtubule attachments by Mad2 in human cells. Curr. Biol. 22, 638–644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011). Demonstrates that loss of RB function leads to nucleotide deficiency and aberrant DNA replication.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nature Cell Biol. 7, 420–428 (2005).

    CAS  PubMed  Google Scholar 

  64. Benetti, R. et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J. Cell Biol. 178, 925–936 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Manning, A. L., Longworth, M. S. & Dyson, N. J. Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev. 24, 1364–1376 (2010). Shows that RB controls centromere structure and function and that in its absence mitotic errors lead to aneuploidy.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Coschi, C. H. et al. Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev. 24, 1351–1363 (2010). Demonstrates, using a knock-in mutant of RB, that defective chromosome condensation contributes to cancer pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. van Harn, T. et al. Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev. 24, 1377–1388 (2010). Shows that deletion of all three RB-family proteins causes chromosomal breaks and aneuploidy.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    CAS  Google Scholar 

  70. Wu, L. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942–947 (2003).

    CAS  PubMed  Google Scholar 

  71. Ianari, A. et al. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell 15, 184–194 (2009). Reveals that phosphorylated RB participates in a transcriptional activation mechanism that drives the expression of apoptotic target genes in response to DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Helin, K. et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350 (1992).

    CAS  PubMed  Google Scholar 

  73. Seifried, L. A. et al. pRB–E2F1 complexes are resistant to adenovirus E1A-mediated disruption. J. Virol. 82, 4511–4520 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cecchini, M. J. & Dick, F. A. The biochemical basis of CDK phosphorylation-independent regulation of E2F1 by the retinoblastoma protein. Biochem. J. 434, 297–308 (2011).

    CAS  PubMed  Google Scholar 

  75. Wells, J., Yan, P. S., Cechvala, M., Huang, T. & Farnham, P. J. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 22, 1445–1460 (2003).

    CAS  PubMed  Google Scholar 

  76. Avni, D. et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12, 735–746 (2003).

    CAS  PubMed  Google Scholar 

  77. Calbo, J. et al. G1 cyclin/cyclin-dependent kinase-coordinated phosphorylation of endogenous pocket proteins differentially regulates their interactions with E2F4 and E2F1 and gene expression. J. Biol. Chem. 277, 50263–50274 (2002).

    CAS  PubMed  Google Scholar 

  78. Carnevale, J., Palander, O., Seifried, L. A. & Dick, F. A. DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Mol. Cell. Biol. 32, 900–912 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bosco, E. E. et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest. 117, 218–228 (2007).

    CAS  PubMed  Google Scholar 

  80. Hallstrom, T. C., Mori, S. & Nevins, J. R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13, 11–22 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Irwin, M. S. et al. Chemosensitivity linked to p73 function. Cancer Cell 3, 403–410 (2003).

    CAS  PubMed  Google Scholar 

  82. Carr, S. M., Munro, S., Kessler, B., Oppermann, U. & La Thangue, N. B. Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J. 30, 317–327 (2011).

    CAS  PubMed  Google Scholar 

  83. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N. B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Genet. 3, 667–674 (2001).

    CAS  Google Scholar 

  84. Markham, D., Munro, S., Soloway, J., O'Connor, D. P. & La Thangue, N. B. DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep. 7, 192–198 (2006).

    CAS  PubMed  Google Scholar 

  85. Munro, S., Khaire, N., Inche, A., Carr, S. & La Thangue, N. B. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29, 2357–2367 (2010).

    CAS  PubMed  Google Scholar 

  86. Saddic, L. A. et al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J. Biol. Chem. 285, 37733–37740 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Henley, S. A. & Dick, F. A. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 7, 10 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 24, 2796–2809 (2005).

    CAS  PubMed  Google Scholar 

  89. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    CAS  PubMed  Google Scholar 

  90. Lee, M. H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–1632 (1996).

    CAS  PubMed  Google Scholar 

  91. Cobrinik, D. et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10, 1633–1644 (1996).

    CAS  PubMed  Google Scholar 

  92. Lamber, E.P. et al. Structural insights into the mechanism of phosphoregulation of the retinoblastoma protein. PLoS ONE 8, e58463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors laboratories is supported by awards from the Canadian Institutes of Health Research (MOP89765 and MOP64253) and the Canadian Cancer Society Research Institute (2011-700720) to F.A.D, and the US National Institutes of Health (R01CA132685) and the American Cancer Society (RSG-12-131-01-CCG) to S.M.R. F.A.D is The Wolfe Senior Fellow in Tumour Suppressor Genes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frederick A. Dick or Seth M. Rubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

2QDJ

1GUX

1N4M

2AZE

FURTHER INFORMATION

Frederick A. Dick's homepage

Seth M. Rubin's homepage

Glossary

Cyclin

A family of proteins that activate cyclin-dependent kinases and whose stability is cell-cycle regulated.

CDK

(Cyclin-dependent kinase). A family of kinases that are activated by cyclins.

E2F

(E2-binding factor). A family of cell-cycle regulated transcription factors.

Pocket

A region in RB-family proteins that was originally determined to bind to viral oncoproteins, such as SV40 TAg.

Differentiation-related polypeptide

(DP). The E2F dimerization partner.

Pocket proteins

RB-family proteins, defined by their possession of the central 'pocket' domain.

p27

An inhibitor of cyclin-dependent kinase activity.

F box protein

A protein containing the F box domain, an approximately 50-amino acid motif that facilitates protein–protein interactions.

S phase kinase-associated protein 2

(SKP2). An adaptor protein that recruits p27 to the SKP–cullin–F box E3 ligase complex.

APC/C

(Anaphase-promoting complex; also known as the cyclosome). An E3 ubiquitin ligase.

Merotelic

When multiple microtubules, emanating from opposite spindle poles, simultaneously bind to a single kinetochore.

Aneuploidy

An abnormal number of chromosomes in a cell.

Centromere

A constricted region of a chromosome that interacts with kinetochores and is the attachment point for spindle microtubules.

Condensin II

A protein complex made up of seven protein subunits that create a ring structure to link and supercoil DNA strands.

Cohesin

A ring-structured protein complex similar to the condensins that creates cohesion between replicated, homologous DNA strands and regulates their separation during cell division.

Pericentromere

A repetitive chromosomal region adjacent to the centromere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, F., Rubin, S. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol 14, 297–306 (2013). https://doi.org/10.1038/nrm3567

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3567

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer