Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Orchestrating vesicle transport, ESCRTs and kinase surveillance during abscission

Abstract

During the final stage of cell division, the future daughter cells are physically separated through abscission. This process requires coordination of many molecular machines, including endocytic and secretory vesicle trafficking proteins as well as ESCRT (endosomal sorting complex required for transport) proteins, that mediate a complex series of events to culminate in the final separation of daughter cells. Abscission is coordinated with other cellular processes (for example, nuclear pore reassembly) through mitotic kinases such as Aurora B and Polo-like kinase 1, which act as master regulators to ensure proper progression of abscission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major stages from cytokinesis to abscission.
Figure 2: Multiple pathways are required to accomplish abscission.
Figure 3: The mitotic kinases PLK1 and Aurora B regulate cytokinesis progression and coordination.

Similar content being viewed by others

References

  1. Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    Article  CAS  Google Scholar 

  2. Skop, A. R., Liu, H., Yates, J. 3rd, Meyer, B. J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66 (2004).

    Article  CAS  Google Scholar 

  3. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    Article  CAS  Google Scholar 

  4. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    Article  CAS  Google Scholar 

  5. Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

    Article  CAS  Google Scholar 

  6. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  Google Scholar 

  7. Elad, N., Abramovitch, S., Sabanay, H. & Medalia, O. Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. J. Cell Sci. 124, 207–215 (2011).

    Article  CAS  Google Scholar 

  8. Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell 20, 4652–4663 (2009).

    Article  CAS  Google Scholar 

  9. Hehnly, H. & Doxsey, S. Polarity sets the stage for cytokinesis. Mol. Biol. Cell 23, 7–11 (2012).

    Article  CAS  Google Scholar 

  10. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  Google Scholar 

  11. Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Struct. Mol. Biol. 15, 1278–1286 (2008).

    Article  CAS  Google Scholar 

  12. Bastos, R. N. & Barr, F. A. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J. Cell Biol. 191, 751–760 (2010).

    Article  CAS  Google Scholar 

  13. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  Google Scholar 

  14. Mackay, D. R., Elgort, S. W. & Ullman, K. S. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol. Biol. Cell 20, 1652–1660 (2009).

    Article  CAS  Google Scholar 

  15. Platani, M. et al. The Nup107–160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol. Biol. Cell 20, 5260–5275 (2009).

    Article  CAS  Google Scholar 

  16. Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M. & Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336, 220–225 (2012).

    Article  CAS  Google Scholar 

  17. Wilson, G. M. et al. The FIP3–Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 16, 849–860 (2005).

    Article  CAS  Google Scholar 

  18. Skop, A. R., Bergmann, D., Mohler, W. A. & White, J. G. Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr. Biol. 11, 735–746 (2001).

    Article  CAS  Google Scholar 

  19. Goss, J. W. & Toomre, D. K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol. 181, 1047–1054 (2008).

    Article  CAS  Google Scholar 

  20. Cascone, I. et al. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J. 27, 2375–2387 (2008).

    Article  CAS  Google Scholar 

  21. Zhao, W. M., Seki, A. & Fang, G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol. Biol. Cell 17, 3881–3896 (2006).

    Article  CAS  Google Scholar 

  22. Low, S. H. et al. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell 4, 753–759 (2003).

    Article  CAS  Google Scholar 

  23. Kouranti, I., Sachse, M., Arouche, N., Goud, B. & Echard, A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16, 1719–1725 (2006).

    Article  CAS  Google Scholar 

  24. Chesneau, L. et al. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol. 22, 147–153 (2012).

    Article  CAS  Google Scholar 

  25. Schiel, J. A. et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci. 124, 1411–1424 (2011).

    Article  CAS  Google Scholar 

  26. Finger, F. P. Reining in cytokinesis with a septin corral. Bioessays 27, 5–8 (2005).

    Article  CAS  Google Scholar 

  27. Dambournet, D. et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nature Cell Biol. 13, 981–988 (2011).

    Article  CAS  Google Scholar 

  28. Emoto, K., Inadome, H., Kanaho, Y., Narumiya, S. & Umeda, M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 280, 37901–37907 (2005).

    Article  CAS  Google Scholar 

  29. Martin-Belmonte, F. & Mostov, K. Phosphoinositides control epithelial development. Cell Cycle 6, 1957–1961 (2007).

    Article  CAS  Google Scholar 

  30. Fielding, A. B. et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 24, 3389–3399 (2005).

    Article  CAS  Google Scholar 

  31. Wu, S., Mehta, S. Q., Pichaud, F., Bellen, H. J. & Quiocho, F. A. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nature Struct. Mol. Biol. 12, 879–885 (2005).

    Article  CAS  Google Scholar 

  32. Henry, L. & Sheff, D. R. Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome. Mol. Biol. Cell 19, 2059–2068 (2008).

    Article  CAS  Google Scholar 

  33. Kaplan, A. & Reiner, O. Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. J. Cell Sci. 124, 3989–4000 (2011).

    Article  CAS  Google Scholar 

  34. Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nature Rev. Mol. Cell Biol. 9, 833–845 (2008).

    Article  CAS  Google Scholar 

  35. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol. 9, 1066–1073 (2007).

    Article  CAS  Google Scholar 

  36. Wollert, T. et al. The ESCRT machinery at a glance. J. Cell Sci. 122, 2163–2166 (2009).

    Article  CAS  Google Scholar 

  37. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  Google Scholar 

  38. Caballe, A. & Martin-Serrano, J. ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 12, 1318–1326 (2011).

    Article  CAS  Google Scholar 

  39. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  Google Scholar 

  40. Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).

    Article  CAS  Google Scholar 

  41. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).

    Article  CAS  Google Scholar 

  42. Agromayor, M. et al. Essential role of hIST1 in cytokinesis. Mol. Biol. Cell 20, 1374–1387 (2009).

    Article  CAS  Google Scholar 

  43. Jouvenet, N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. Dynamics of ESCRT protein recruitment during retroviral assembly. Nature Cell Biol. 13, 394–401 (2011).

    Article  CAS  Google Scholar 

  44. Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    Article  CAS  Google Scholar 

  45. Lambert, C., Doring, T. & Prange, R. Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and γ2-adaptin. J. Virol. 81, 9050–9060 (2007).

    Article  CAS  Google Scholar 

  46. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    Article  CAS  Google Scholar 

  47. Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008).

    Article  CAS  Google Scholar 

  48. Mackay, D. R., Makise, M. & Ullman, K. S. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol. 191, 923–931 (2010).

    Article  CAS  Google Scholar 

  49. Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  Google Scholar 

  50. Carmena, M., Ruchaud, S. & Earnshaw, W. C. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr. Opin. Cell Biol. 21, 796–805 (2009).

    Article  CAS  Google Scholar 

  51. Fabbro, M. et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9, 477–488 (2005).

    Article  CAS  Google Scholar 

  52. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    Article  CAS  Google Scholar 

  53. Capalbo, L. et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol. 2, 120070 (2012).

    Article  Google Scholar 

  54. D'Angelo, M. A. & Hetzer, M. W. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18, 456–466 (2008).

    Article  CAS  Google Scholar 

  55. Robinson, D. N., Girard, K. D., Octtaviani, E. & Reichl, E. M. Dictyostelium cytokinesis: from molecules to mechanics. J. Muscle Res. Cell. Motil. 23, 719–727 (2002).

    Article  CAS  Google Scholar 

  56. Jurgens, G. Plant cytokinesis: fission by fusion. Trends Cell Biol. 15, 277–283 (2005).

    Article  Google Scholar 

  57. Burch-Smith, T. M. & Zambryski, P. C. Plasmodesmata paradigm shift: regulation from without versus within. Annu. Rev. Plant Biol. 63, 239–260 (2012).

    Article  CAS  Google Scholar 

  58. Rosa, J., Canovas, P., Islam, A., Altieri, D. C. & Doxsey, S. J. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol. Biol. Cell 17, 1483–1493 (2006).

    Article  CAS  Google Scholar 

  59. Janke, C. & Bulinski, J. C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nature Rev. Mol. Cell Biol. 12, 773–786 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work is not discussed or cited owing to space constraints. The authors are particularly grateful to A. Bright and S. Redick from the Doxsey laboratory for critical reading of the manuscript and thoughtful discussions. Work in the Doxsey laboratory is supported by the US National Institutes of Health (NIH), the Ellison Medical Foundation, the W. M. Keck Foundation and the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Doxsey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Stephen J. Doxsey's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CT., Hehnly, H. & Doxsey, S. Orchestrating vesicle transport, ESCRTs and kinase surveillance during abscission. Nat Rev Mol Cell Biol 13, 483–488 (2012). https://doi.org/10.1038/nrm3395

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing