Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The 'invisible hand': regulation of RHO GTPases by RHOGDIs

Key Points

  • RHO-specific guanine nucleotide dissociation inhibitors (RHOGDIs) are a family of proteins that have key roles in the regulation of the RHO GTPases. RHOGDIs function as negative regulators of RHO GTPases, extracting them from membranes and preventing their activation.

  • RHOGDIs maintain a stable soluble pool of inactive RHO GTPases in the cytoplasm. Binding to RHOGDIs protects RHO GTPases from degradation.

  • The total levels of the major RHO GTPases are determined by the levels of RHOGDIs in the cell. RHO proteins that are not bound to RHOGDIs or associated with membranes are degraded.

  • Through competition for binding to RHOGDIs, there is crosstalk between RHO GTPases. Changes in the expression of one leads to the displacement of the others from the RHOGDI and results in their degradation.

  • RHOGDIs play a part in shuttling RHO GTPases between different cellular membranes and regulate the delivery and extraction of RHO GTPases to and from their sites of action.

  • The interaction between RHOGDIs and RHO GTPases can be regulated by several different mechanisms. Some regulate the specific displacement of a single RHO GTPase from RHOGDI, whereas others displace all of the RHO GTPases equally.

  • Changes in expression of RHOGDIs have been associated with different types of cancer.

Abstract

The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RHOGDI cycle.
Figure 2: Structure of the RHOGDI–RHO GTPase complex.
Figure 3: Mechanisms of regulation of the RHOGDI–RHO GTPase interaction.

Similar content being viewed by others

References

  1. DerMardirossian, C. & Bokoch, G. M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Fukumoto, Y. et al. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5, 1321–1328 (1990).

    CAS  PubMed  Google Scholar 

  3. Leonard, D. et al. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J. Biol. Chem. 267, 22860–22868 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Lelias, J. M. et al. cDNA cloning of a human mRNA preferentially expressed in hematopoietic cells and with homology to a GDP-dissociation inhibitor for the rho GTP-binding proteins. Proc. Natl Acad. Sci. USA 90, 1479–1483 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scherle, P., Behrens, T. & Staudt, L. M. Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc. Natl Acad. Sci. USA 90, 7568–7572 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Platko, J. V. et al. A single residue can modify target-binding affinity and activity of the functional domain of the Rho-subfamily GDP dissociation inhibitors. Proc. Natl Acad. Sci. USA 92, 2974–2978 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorvel, J. P., Chang, T. C., Boretto, J., Azuma, T. & Chavrier, P. Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity. FEBS Lett. 422, 269–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Brunet, N., Morin, A. & Olofsson, B. RhoGDI-3 regulates RhoG and targets this protein to the Golgi complex through its unique N-terminal domain. Traffic 3, 342–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Zalcman, G. et al. RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG. J. Biol. Chem. 271, 30366–30374 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Adra, C. N. et al. RhoGDIγ: a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc. Natl Acad. Sci. USA 94, 4279–4284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, A. The Theory of Moral Sentiments (A. Millar, London, 1759).

    Book  Google Scholar 

  12. Boulter, E. et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nature Cell Biol. 12, 477–483 (2010). Shows that RHOGDI1 not only does act as a chaperone, protecting multiple RHO GTPases from proteolytic degradation, but is also involved in the crosstalk of RHO GTPases, which compete for binding to RHOGDI1, such that overexpression of one leads to the displacement and degradation of the others.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J. & Takai, Y. Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J. Biol. Chem. 265, 9373–9380 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Hart, M. J. et al. A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs. Science 258, 812–815 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cox, A. D. & Der, C. J. Protein prenylation: more than just glue? Curr. Opin. Cell Biol. 4, 1008–1016 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Rolli-Derkinderen, M. et al. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ. Res. 96, 1152–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hancock, J. F. & Hall, A. A novel role for RhoGDI as an inhibitor of GAP proteins. EMBO J. 12, 1915–1921 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gandhi, P. N. et al. An activating mutant of Rac1 that fails to interact with Rho GDP-dissociation inhibitor stimulates membrane ruffling in mammalian cells. Biochem. J. 378, 409–419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gibson, R. M. et al. An activating mutant of Cdc42 that fails to interact with Rho GDP-dissociation inhibitor localizes to the plasma membrane and mediates actin reorganization. Exp. Cell Res. 301, 211–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gibson, R. M. & Wilson-Delfosse, A. L. RhoGDI-binding-defective mutant of Cdc42Hs targets to membranes and activates filopodia formation but does not cycle with the cytosol of mammalian cells. Biochem. J. 359, 285–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tiedje, C., Sakwa, I., Just, U. & Hofken, T. The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms. Mol. Biol. Cell 19, 2885–2896 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nature Med. 14, 1370–1376 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Togawa, A. et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIα. Oncogene 18, 5373–5380 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, Q., Fuji, R. N., Yang, W. & Cerione, R. A. RhoGDI is required for Cdc42-mediated cellular transformation. Curr. Biol. 13, 1469–1479 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, R., Bagrodia, S., Cerione, R. & Manor, D. A novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 7, 794–797 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Chianale, F. et al. Diacylglycerol kinase α mediates HGF-induced Rac activation and membrane ruffling by regulating atypical PKC and RhoGDI. Proc. Natl Acad. Sci. USA 107, 4182–4187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nevins, A. K. & Thurmond, D. C. Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic β-cells. J. Biol. Chem. 281, 18961–18972 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kowluru, A. et al. Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure β cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion. J. Clin. Invest. 98, 540–555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slaughter, B. D., Das, A., Schwartz, J. W., Rubinstein, B. & Li, R. Dual modes of Cdc42 recycling fine-tune polarized morphogenesis. Dev. Cell 17, 823–835 (2009). Proposes a dual recycling mechanism for Cdc42 in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000). Solved the crystal structure of prenylated CDC42 in complex with RHOGDI1.

    Article  CAS  PubMed  Google Scholar 

  33. Longenecker, K. et al. How RhoGDI binds Rho. Acta Crystallogr. D Biol. Crystallogr. 55, 1503–1515 (1999).

    Article  CAS  Google Scholar 

  34. Grizot, S. et al. Crystal structure of the Rac1–RhoGDI complex involved in NADPH oxidase activation. Biochemistry 40, 10007–10013 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Scheffzek, K., Stephan, I., Jensen, O. N., Illenberger, D. & Gierschik, P. The Rac–RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nature Struct. Biol. 7, 122–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Nomanbhoy, T. K. & Cerione, R. Characterization of the interaction between RhoGDI and Cdc42Hs using fluorescence spectroscopy. J. Biol. Chem. 271, 10004–10009 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Phillips, M. J., Calero, G., Chan, B., Ramachandran, S. & Cerione, R. A. Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42. J. Biol. Chem. 283, 14153–14164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnson, J. L., Erickson, J. W. & Cerione, R. A. New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J. Biol. Chem. 284, 23860–23871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chuang, T. H., Bohl, B. P. & Bokoch, G. M. Biologically active lipids are regulators of Rac.GDI complexation. J. Biol. Chem. 268, 26206–26211 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Faure, J., Vignais, P. V. & Dagher, M. C. Phosphoinositide-dependent activation of Rho A involves partial opening of the RhoA/Rho-GDI complex. Eur. J. Biochem. 262, 879–889 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Del Pozo, M. A. et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nature Cell Biol. 4, 232–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Robbe, K., Otto-Bruc, A., Chardin, P. & Antonny, B. Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. J. Biol. Chem. 278, 4756–4762 (2003). Provides evidence for a two-step model of RHO protein activation, in which release from RHOGDI is promoted by lipids, leading to membrane translocation and subsequent GEF-mediated nucleotide exchange.

    Article  CAS  PubMed  Google Scholar 

  44. Ugolev, Y., Berdichevsky, Y., Weinbaum, C. & Pick, E. Dissociation of Rac1(GDP).RhoGDI complexes by the cooperative action of anionic liposomes containing phosphatidylinositol 3,4,5-trisphosphate, Rac guanine nucleotide exchange factor, and GTP. J. Biol. Chem. 283, 22257–22271 (2008). Shows that liposomes containing phosphoinositides cooperate with active GEFs to release and activate RAC1 from RHOGDI1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Worthylake, D. K., Rossman, K. L. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Machner, M. P. & Isberg, R. R. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318, 974–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Schoebel, S., Oesterlin, L. K., Blankenfeldt, W., Goody, R. S. & Itzen, A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 36, 1060–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, O., Yang, J. & Qiu, Y. Selective activation of small GTPase RhoA by tyrosine kinase Etk through its pleckstrin homology domain. J. Biol. Chem. 277, 30066–30071 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Maeda, M., Matsui, T., Imamura, M. & Tsukita, S. Expression level, subcellular distribution and Rho-GDI binding affinity of merlin in comparison with ezrin/radixin/moesin proteins. Oncogene 18, 4788–4797 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci. 6, 461–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene 16, 3279–3284 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol. 135, 37–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Qiu, Y. & Kung, H. J. Signaling network of the Btk family kinases. Oncogene 19, 5651–5661 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. DerMardirossian, C., Schnelzer, A. & Bokoch, G. M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127 (2004). Shows that RHOGDI1 is a substrate for PAK1 and that phosphorylation by PAK1 results in the selective release of RAC1 from RHOGDI1.

    Article  CAS  PubMed  Google Scholar 

  56. Dovas, A. et al. Serine34 phosphorylation of RHO guanine dissociation inhibitor (RHOGDIα) links signaling from conventional protein kinase C to RHO GTPase in cell adhesion. J. Biol. Chem. 285, 23296–23308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abramovici, H. et al. Diacylglycerol kinase-ζ regulates actin cytoskeleton reorganization through dissociation of Rac1 from RhoGDI. Mol. Biol. Cell 20, 2049–2059 (2009). Demonstrates that the phosphatidic acid produced by DGKζ initiates RHOGDI release and RAC1 activation through PAK1-mediated phosphorylation of RHOGDI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elfenbein, A. et al. Suppression of RhoG activity is mediated by a syndecan 4–synectin–RhoGDI1 complex and is reversed by PKCα in a Rac1 activation pathway. J. Cell Biol. 186, 75–83 (2009). Shows that RHOG affinity for RHOGDI1 increases when RHOGDI forms a complex with syndecan 4 and its binding partner, synectin, and that, in response to FGF2 binding to syndecan 4, RHOG is released and activated as a result of phosphorylation by PKCα.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nature Cell Biol. 4, 574–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126 (2001). A seminal paper analyzing the factors that affect the subcellular distribution of RHO GTPases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rolli-Derkinderen, M., Toumaniantz, G., Pacaud, P. & Loirand, G. RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor α and stimulation of vascular smooth muscle cell migration. Mol. Cell. Biol. 30, 4786–4796 (2010). Shows that RHOA phosphorylation by PKG in vascular smooth muscle cells increases RHOA binding to RHOGDI1, thereby displacing and activating bound RAC1, resulting in increased cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tkachenko, E. et al. Protein kinase A governs a RhoA–RhoGDI protrusion-retraction pacemaker in migrating cells. Nature Cell Biol. 13, 661–668 (2011). Activation of PKA at the leading edge of cells coordinates protrusion and retraction through a mechanism involving PKA-mediated phosphorylation of RHOA on Ser188, which promotes RHOA binding to RHOGDI and inhibition of RHOA activity.

    Article  CAS  Google Scholar 

  64. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. O'Connor, K. L., Nguyen, B. K. & Mercurio, A. M. RhoA function in lamellae formation and migration is regulated by the α6β4 integrin and cAMP metabolism. J. Cell Biol. 148, 253–258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishizaki, H. et al. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors α and β. J. Immunol. 177, 8512–8521 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D. & Schwartz, M. A. Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res. 69, 2838–2844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bielek, H., Anselmo, A. & Dermardirossian, C. Morphological and proliferative abnormalities in renal mesangial cells lacking RhoGDI. Cell Signal. 21, 1974–1983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gorovoy, M. et al. RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs. Circ. Res. 101, 50–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Harding, M. A. & Theodorescu, D. RhoGDI signaling provides targets for cancer therapy. Eur. J. Cancer 46, 1252–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Jones, M. B. et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2, 76–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Zhao, L., Wang, H., Li, J., Liu, Y. & Ding, Y. Overexpression of Rho GDP-dissociation inhibitor α is associated with tumor progression and poor prognosis of colorectal cancer. J. Proteome Res. 7, 3994–4003 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, L., Wang, H., Sun, X. & Ding, Y. Comparative proteomic analysis identifies proteins associated with the development and progression of colorectal carcinoma. FEBS J. 277, 4195–4204 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Forget, M.-A. et al. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin. Exp. Metastasis 19, 9–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Fritz, G., Lang, P. & Just, I. Tissue-specific variations in the expression and regulation of the small GTP-binding protein Rho. Biochim. Biophys. Acta 1222, 331–338 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Jiang, W. G. et al. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. Clin. Cancer Res. 9, 6432–6440 (2003).

    CAS  PubMed  Google Scholar 

  78. Ding, J. et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nature Cell Biol. 12, 390–399 (2010). During hepatocellular carcinoma progression and tumour cell invasion, RHOGDI1 expression is downregulated by miR-151, which is encoded within an intron of the gene encoding FAK.

    Article  CAS  PubMed  Google Scholar 

  79. Harding, M. A. & Theodorescu, D. RhoGDI2: a new metastasis suppressor gene: discovery and clinical translation. Urol. Oncol. 25, 401–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Abiatari, I. et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma. Mol. Cancer Ther. 8, 1494–1504 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Koide, N. et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin. Cancer Res. 12, 2419–2426 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Seraj, M. J., Harding, M. A., Gildea, J. J., Welch, D. R. & Theodorescu, D. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin. Exp. Metastasis 18, 519–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Theodorescu, D. et al. Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin. Cancer Res. 10, 3800–3806 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, L. et al. Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma. Br. J. Haematol. 139, 217–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Hu, L. D., Zou, H. F., Zhan, S. X. & Cao, K. M. Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymph node metastasis. Oncol. Rep. 17, 1383–1389 (2007).

    PubMed  Google Scholar 

  86. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Habets, G. G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP–GTP exchangers for Rho-like proteins. Cell 77, 537–549 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Hordijk, P. L. et al. Inhibition of invasion of epithelial cells by Tiam1–Rac signaling. Science 278, 1464–1466 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Mehta, D., Rahman, A. & Malik, A. B. Protein kinase C-α signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J. Biol. Chem. 276, 22614–22620 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Knezevic, N. et al. GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol. Cell. Biol. 27, 6323–6333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qiao, J. et al. Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am. J. Physiol. Cell Physiol. 295, C1161–C1168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guerrera, I. C., Keep, N. H. & Godovac-Zimmermann, J. Proteomics study reveals cross-talk between Rho guanidine nucleotide dissociation inhibitor 1 post-translational modifications in epidermal growth factor stimulated fibroblasts. J. Proteome Res. 6, 2623–2630 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Kuribayashi, K. et al. Essential role of protein kinase C ζ in transducing a motility signal induced by superoxide and a chemotactic peptide, fMLP. J. Cell Biol. 176, 1049–1060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. DerMardirossian, C., Rocklin, G., Seo, J.-Y. & Bokoch, G. M. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol. Biol. Cell 17, 4760–4768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, Y. et al. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc. Natl Acad. Sci. USA 106, 5807–5812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fei, F. et al. The Fer tyrosine kinase regulates interactions of Rho GDP-dissociation inhibitor α with the small GTPase Rac. BMC Biochem. 11, 48 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sauzeau, V., Rolli-Derkinderen, M., Marionneau, C., Loirand, G. & Pacaud, P. RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J. Biol. Chem. 278, 9472–9480 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Lang, P. et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 15, 510–519 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong, J. M., Leung, T., Manser, E. & Lim, L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα. J. Biol. Chem. 273, 22554–22562 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Tamma, G. et al. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J. Cell Sci. 116, 1519–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ellerbroek, S. M., Wennerberg, K. & Burridge, K. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem. 278, 19023–19031 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Guilluy, C. et al. Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II type 2 receptor activation. Circ. Res. 102, 1265–1274 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Forget, M. A., Desrosiers, R. R., Gingras, D. & Beliveau, R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem. J. 361, 243–254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tu, S., Wu, W. J., Wang, J. & Cerione, R. A. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 278, 49293–49300 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Schoentaube, J., Olling, A., Tatge, H., Just, I. & Gerhard, R. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A. Cell. Microbiol. 11, 1816–1826 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kwon, T., Kwon, D. Y., Chun, J., Kim, J. H. & Kang, S. S. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J. Biol. Chem. 275, 423–428 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.G.M. gratefully acknowledges support from the Simmons Scholars Program. E.B. gratefully acknowledges a Fellowship from the city of Nice (to E.B.) and an Allocation INSERM InCa/AVENIR (#R08227AS). K.B. gratefully acknowledges the Kenan Foundation for support and US National Institutes of Health grants GM029860 and HL080166.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Garcia-Mata or Keith Burridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

NCBI Molecular Modeling Database

12765

SOFTWARE

ClustalW

FURTHER INFORMATION

Rafael Garcia-Mata's homepage

Keith Burridge's homepage

Glossary

Switch I and switch II

Two regions in RHO GTPases that undergo a conformational change in the active GTP-bound form and provide a platform for the selective interaction with downstream effectors.

Prenylated

Modified by the attachment of an isoprenoid to a carboxy-terminal Cys residue.

Isoprenoid

A compound that is derived from isoprene (2-methyl-1,3-butadiene) molecules linked together in a head-to-tail or a tail-to-tail conformation. These include farnesyl diphosphate or geranylgeranyl diphosphate molecules, which are used in the covalent modification of proteins on Cys residues.

Isoprenylation

Post-translational modification of proteins by the attachment of an isoprenoid to a carboxy-terminal Cys residue. The isoprenoids used, farnesyl diphosphate or geranylgeranyl diphosphate, are derived from the same biochemical pathway that produces cholesterol.

Geranylgeranyl

A 20-carbon isoprenoid precursor to geranylgeranylated proteins. The source of the geranylgeranyl group is geranylgeranyl pyrophosphate, an intermediate in the hydroxy-methylglutaryl CoA reductase pathway that is used by organisms in the biosynthesis of terpenes and terpenoids.

Immunoglobulin-like fold

A type of protein domain that consists of a two-layer sandwich of between seven and nine antiparallel β-strands arranged in two β-sheets.

Steric hindrances

Obstructions that occur when the size of groups within a molecule prevents chemical reactions that are observed in related smaller molecules.

Isomerization

The process by which one molecule is transformed into another molecule that has exactly the same molecular formula but a different structure.

Lipid raft

A membrane microdomain that is enriched in cholesterol, sphingolipids and lipid-modified proteins, such as glycosyl phosphatidylinositol-linked proteins and palmitoylated proteins. These microdomains often function as platforms for signalling events.

DBL homology domain

A domain of 200 amino acids that has been shown to encode guanine nucleotide exchange factor activity towards many specific RHO family members.

Pleckstrin homology domain

A protein domain of 120 amino acids that is found in a wide range of proteins involved in intracellular signalling. Frequently, these domains bind cell membranes by interacting with acidic phospholipids, such as phosphoinositides.

Lamellae

Flat, sheet-like protrusions at the edge of the cell. A fan-shaped lamella is a prominent feature identifying the leading edge of a cell undergoing locomotion on a flat surface. Actin networks are the principal structures within these lamellae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Mata, R., Boulter, E. & Burridge, K. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12, 493–504 (2011). https://doi.org/10.1038/nrm3153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3153

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer