Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Mechanisms of mitophagy

Abstract

Autophagy not only recycles intracellular components to compensate for nutrient deprivation but also selectively eliminates organelles to regulate their number and maintain quality control. Mitophagy, the specific autophagic elimination of mitochondria, has been identified in yeast, mediated by autophagy-related 32 (Atg32), and in mammals during red blood cell differentiation, mediated by NIP3-like protein X (NIX; also known as BNIP3L). Moreover, mitophagy is regulated in many metazoan cell types by parkin and PTEN-induced putative kinase protein 1 (PINK1), and mutations in the genes encoding these proteins have been linked to forms of Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-selective autophagy and mitophagy have different roles.
Figure 2: The Atg32, NIX and PINK1–parkin pathways of mitophagy.

Similar content being viewed by others

References

  1. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  Google Scholar 

  2. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nature Cell Biol. 12, 814–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Mari, M. et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biol. 12, 747–757 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Klionsky, D. J. et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6, 438–448 (2010).

    Article  PubMed  Google Scholar 

  8. Oku, M. & Sakai, Y. Pexophagy in Pichia pastoris. Methods Enzymol. 451, 217–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379–1385 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Tolkovsky, A. M., Xue, L., Fletcher, G. C. & Borutaite, V. Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84, 233–240 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Nowikovsky, K., Reipert, S., Devenish, R. J. & Schweyen, R. J. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ. 14, 1647–1656 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Westermann, D. Mitochondrial fusion and fission in cell life and death. Nature Rev. Mol. Cell Biol. 11, 872–884 (2010).

    Article  CAS  Google Scholar 

  17. Tal, R., Winter, G., Ecker, N., Klionsky, D. J. & Abeliovich, H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 282, 5617–5624 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kissova, I., Deffieu, M., Manon, S. & Camougrand, N. Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068–39074 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kanki, T., Wang, K. & Klionsky, D. J. A genomic screen for yeast mutants defective in mitophagy. Autophagy 6, 278–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl Acad. Sci. USA 107, 832–837 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, J. et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114, 157–164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aerbajinai, W., Giattina, M., Lee, Y. T., Raffeld, M. & Miller, J. L. The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102, 712–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aouacheria, A., Brunet, F. & Gouy, M. Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-only, and BNip families of apoptotic regulators. Mol. Biol. Evol. 22, 2395–2416 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Schwarten, M. et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690–698 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Poole, A. C. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl Acad. Sci. USA 105, 1638–1643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, Y. et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl Acad. Sci. USA 105, 7070–7075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng, H., Dodson, M. W., Huang, H. & Guo, M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA 105, 14503–14508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suen, D. F., Narendra, D. P., Tanaka, A., Manfredi, G. & Youle, R. J. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc. Natl Acad. Sci. USA 107, 11835–11840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biol. 12, 119–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, Y. et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. BBRC 377, 975–980 (2008).

    CAS  PubMed  Google Scholar 

  46. Kawajiri, S. et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 584, 1073–1079 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding, W. X. et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin–ubiquitin–p62- mediated mitochondrial priming. J. Biol. Chem. 285, 27879–27890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, W. & Kang, U. J. Characterization of PINK1 processing, stability, and subcellular localization. J. Neurochem. 106, 464–474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whitworth, A. J. et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis. Model Mech. 1, 168–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shiba, K. et al. Parkin stabilizes PINK1 through direct interaction. Biochem. Biophys. Res. Commun. 383, 331–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Um, J. W., Stichel-Gunkel, C., Lübbert, H., Lee, G. & Chung, K. C. Molecular interaction between Parkin and Pink1 in mammalian neuronal cells. Mol. Cell Neurosci. 40, 421–432 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Sha, D., Chin, L. S. & Li, L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum. Mol. Genet. 19, 352–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, J. Y., Nagano, Y., Taylor, J. P., Lim, K. L. & Yao, T. P. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189, 671–679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okatsu, K. et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15, 887–900 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Narendra, D., Kane, L., Hauser, D., Fearnley, I. & Youle, R. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensible for both. Autophagy 6, 1090–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Dawson, T. M. & Dawson, V. L. The role of parkin in familial and sporadic Parkinson's disease. Mov. Disord. 25 (Suppl. 1), S32–S39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. USA 107, 5018–5023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poole, A. C., Thomas, R. E., Yu, S., Vincow, E. S. & Pallanck, L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 5, e10054 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. (in the press; doi:10.1083/jcb.201007013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Geisler, S. et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6, 871–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Cesari, R. et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc. Natl Acad. Sci. USA 100, 5956–5961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Poulogiannis, G. et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl Acad. Sci. USA 107, 15145–15150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klein, C. & Schlossmacher, M. G. The genetics of Parkinson disease: implications for neurological care. Nature Clin. Pract. Neurol. 2, 136–146 (2006).

    Article  CAS  Google Scholar 

  67. Schapira, A. H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 7, 97–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature Genet. 38, 518–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genet. 38, 515–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Luoma, P. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. Lancet 364, 875–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Reeve, A. K. et al. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am. J. Hum. Genet. 82, 228–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baloh, R. H., Salavaggione, E., Milbrandt, J. & Pestronk, A. Familial parkinsonism and ophthalmoplegia from a mutation in the mitochondrial DNA helicase twinkle. Arch. Neurol. 64, 998–1000 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Abeliovich for valuable discussions and D. Suen for the movie that is used in Supplementary information 1. D.P.N. is a member of the US National Institutes of Health–Oxford–Cambridge Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Youle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Richard J. Youle's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youle, R., Narendra, D. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12, 9–14 (2011). https://doi.org/10.1038/nrm3028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing