Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular strategies for controlling protein aggregation

Key Points

  • Cellular systems for protein quality control act to refold or degrade misfolded proteins, thereby preventing protein aggregation. Stress conditions and ageing can lead to an exhaustion of this protective system, causing the generation of protein aggregates.

  • The structures of protein aggregates are highly variable, ranging from amorphous to highly ordered amyloid fibrils, all of them sharing an increased β-sheet content.

  • Cells control protein aggregation by directing misfolded proteins to distinct deposition sites.

  • Protein aggregates are frequently segregated in an asymmetric manner during cell division, allowing the generation of damage-free daughter cells.

  • Cells have developed different strategies to remove protein aggregates. The refolding of aggregated proteins in bacteria, yeast and plants is mediated by the cooperation of 70-kDa heat shock protein 70 (Hsp70) and Hsp104 chaperones and is facilitated by the co-aggregating of small HSPs. Aggregates can also be removed by autophagy, which is a major clearance pathway for aggregates in mammals.

Abstract

The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of cellular protein aggregation.
Figure 2: Pathways for the cellular sequestration of protein aggregates.
Figure 3: Protein disaggregation by the Hsp104–Hsp70 bi-chaperone system.
Figure 4: The role of small heat shock proteins in protein aggregation.
Figure 5: A model for the selective autophagic degradation of protein aggregates.
Figure 6: Asymmetric distribution of damaged proteins as a strategy for rejuvenating the progeny.

References

  1. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    CAS  PubMed  Google Scholar 

  2. Jahn, T. R. & Radford, S. E. The Yin and Yang of protein folding. Febs J. 272, 5962–5970 (2005).

    CAS  PubMed  Google Scholar 

  3. Jaenicke, R. Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology. Biol. Chem. 379, 237–243 (1998).

    CAS  PubMed  Google Scholar 

  4. Gidalevitz, T., Ben-Zvi, A., Ho, K. H., Brignull, H. R. & Morimoto, R. I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006). The paper shows how the quality-control system is overwhelmed by the simultaneous presence of otherwise non-pathogenic protein-folding lesions.

    CAS  PubMed  Google Scholar 

  5. Rajan, R. S., Illing, M. E., Bence, N. F. & Kopito, R. R. Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl Acad. Sci. USA 98, 13060–13065 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ben-Zvi, A. P. & Goloubinoff, P. Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J. Biol. Chem. 277, 49422–49427 (2002).

    CAS  PubMed  Google Scholar 

  7. Chai, Y., Shao, J., Miller, V. M., Williams, A. & Paulson, H. L. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis. Proc. Natl Acad. Sci. USA 99, 9310–9315 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nucifora, F. C., Jr et al. Interference by huntingtin and atrophin-1 with Cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    CAS  PubMed  Google Scholar 

  9. Steffan, J. S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 97, 6763–6768 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

    CAS  PubMed  Google Scholar 

  11. Hartl, F. U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nature Struct. Mol. Biol. 16, 574–581 (2009).

    CAS  Google Scholar 

  12. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nature Rev. Mol. Cell Biol. 4, 181–191 (2003).

    CAS  Google Scholar 

  13. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005).

    CAS  PubMed  Google Scholar 

  14. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    CAS  PubMed  Google Scholar 

  15. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    CAS  PubMed  Google Scholar 

  16. Horwich, A. L., Fenton, W. A., Chapman, E. & Farr, G. W. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23, 115–145 (2007).

    CAS  PubMed  Google Scholar 

  17. Spiess, C., Meyer, A. S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009).

    CAS  PubMed  Google Scholar 

  19. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009).

    CAS  Google Scholar 

  20. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    CAS  PubMed  Google Scholar 

  22. Guisbert, E., Yura, T., Rhodius, V. A. & Gross, C. A. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol. Mol. Biol. Rev. 72, 545–554 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morimoto, R. I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  Google Scholar 

  25. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  PubMed  Google Scholar 

  26. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10, S10–S17 (2004).

    PubMed  Google Scholar 

  27. Andley, U. P. Crystallins and hereditary cataracts: molecular mechanisms and potential for therapy. Expert Rev. Mol. Med. 8, 1–19 (2006).

    PubMed  Google Scholar 

  28. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Google Scholar 

  29. Olzmann, J. A. et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 178, 1025–1038 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chin, L. S., Olzmann, J. A. & Li, L. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38, 144–149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pierre, P. Dendritic cells, DRiPs, and DALIS in the control of antigen processing. Immunol. Rev. 207, 184–190 (2005).

    CAS  PubMed  Google Scholar 

  33. Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994). This study shows for the first time that protein aggregation can be reversed in yeast cells in an Hsp104-dependent process.

    CAS  PubMed  Google Scholar 

  34. Stadtman, E. R. & Levine, R. L. Protein oxidation. Ann. NY Acad. Sci. 899, 191–208 (2000).

    CAS  PubMed  Google Scholar 

  35. Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311–1317 (2005).

    PubMed  PubMed Central  Google Scholar 

  36. Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    PubMed  PubMed Central  Google Scholar 

  37. Wang, J. et al. Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc. Natl Acad. Sci. USA 106, 1392–1397 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munch, C. & Bertolotti, A. Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants. J. Mol. Biol. 399, 512–525 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Erjavec, N., Larsson, L., Grantham, J. & Nystrom, T. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev. 21, 2410–2421 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. de Groot, N. S., Sabate, R. & Ventura, S. Amyloids in bacterial inclusion bodies. Trends Biochem. Sci. 34, 408–416 (2009).

    CAS  PubMed  Google Scholar 

  42. Fandrich, M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell. Mol. Life Sci. 64, 2066–2078 (2007).

    CAS  PubMed  Google Scholar 

  43. Maji, S. K., Wang, L., Greenwald, J. & Riek, R. Structure-activity relationship of amyloid fibrils. FEBS Lett. 583, 2610–2617 (2009).

    CAS  PubMed  Google Scholar 

  44. Nelson, R. & Eisenberg, D. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16, 260–265 (2006).

    CAS  PubMed  Google Scholar 

  45. Stathopulos, P. B. et al. Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc. Natl Acad. Sci. USA 100, 7021–7026 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L., Schubert, D., Sawaya, M. R., Eisenberg, D. & Riek, R. Multidimensional structure-activity relationship of a protein in its aggregated states. Angew. Chem. Int. Ed Engl. 49, 3904–3908 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Toyama, B. H., Kelly, M. J., Gross, J. D. & Weissman, J. S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    CAS  PubMed  Google Scholar 

  49. Wiltzius, J. J. et al. Molecular mechanisms for protein-encoded inheritance. Nature Struct. Mol. Biol. 16, 973–978 (2009).

    CAS  Google Scholar 

  50. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004). This study observes reduced toxicity of mutant huntingtin when it is sequestered in inclusion bodies.

    CAS  PubMed  Google Scholar 

  51. Tanaka, M. et al. Aggresomes formed by α-synuclein and synphilin-1 are cytoprotective. J. Biol. Chem. 279, 4625–4631 (2004).

    CAS  PubMed  Google Scholar 

  52. Douglas, P. M. et al. Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc. Natl Acad. Sci. USA 105, 7206–7211 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006). This paper shows that C. elegans can regulate disaggregating and aggregating activities in response to constitutive toxic protein aggregation by insulin growth factor 1-like signalling, which is central in regulating longevity.

    CAS  PubMed  Google Scholar 

  54. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    CAS  PubMed  Google Scholar 

  55. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    CAS  PubMed  Google Scholar 

  56. Taylor, J. P. et al. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12, 749–757 (2003).

    CAS  PubMed  Google Scholar 

  57. Wigley, W. C. et al. Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490 (1999).

    CAS  PubMed  Google Scholar 

  58. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008). This paper reports on the identification of two distinct deposition sites of misfolded proteins in yeast cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gragerov, A. I., Martin, E. S., Krupenko, M. A., Kashlev, M. V. & Nikiforov, V. G. Protein aggregation and inclusion body formation in Escherichia coli RpoH mutant defective in heat shock protein induction. FEBS Lett. 291, 222–224 (1991).

    CAS  PubMed  Google Scholar 

  60. Laskowska, E. et al. Aggregation of heat-shock-denatured, endogenous proteins and distribution of the IbpA/B and Fda marker-proteins in Escherichia coli WT and grpE280 cells. Microbiology 150, 247–259 (2004).

    CAS  PubMed  Google Scholar 

  61. Ventura, S. & Villaverde, A. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24, 179–185 (2006).

    CAS  PubMed  Google Scholar 

  62. Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    CAS  PubMed  Google Scholar 

  63. Kirstein, J., Strahl, H., Moliere, N., Hamoen, L. W. & Turgay, K. Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol. Microbiol. 70, 682–694 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl Acad. Sci. USA 105, 3076–3081 (2008). This study describes asymmetric segregation of protein aggregates in bacteria and the rejuvenation of damage-free daughter cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Winkler, J. et al. Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J. 29, 910–923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mogk, A. et al. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934–6949 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rokney, A. et al. E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. J. Mol. Biol. 392, 589–601 (2009).

    CAS  PubMed  Google Scholar 

  68. Coughlan, C. M. & Brodsky, J. L. Use of yeast as a model system to investigate protein conformational diseases. Mol. Biotechnol. 30, 171–180 (2005).

    CAS  PubMed  Google Scholar 

  69. Edskes, H. K., Gray, V. T. & Wickner, R. B. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl Acad. Sci. USA 96, 1498–1503 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    CAS  PubMed  Google Scholar 

  71. Meriin, A. B. et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA 97, 1589–1594 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C. & Muchowski, P. J. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature Genet. 37, 526–531 (2005).

    CAS  PubMed  Google Scholar 

  74. Tyedmers, J. et al. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. Proc. Natl Acad. Sci. USA 107, 8633–8638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Garcia-Mata, R., Bebok, Z., Sorscher, E. J. & Sztul, E. S. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898 (1998). This study reports on the spatial sequestration of misfolded model proteins in mammalian cells in specialized structures termed aggresomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Garcia-Mata, R., Gao, Y. S. & Sztul, E. Hassles with taking out the garbage: aggravating aggresomes. Traffic 3, 388–396 (2002).

    CAS  PubMed  Google Scholar 

  78. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003). This paper shows that HDAC6 is crucial for targeting misfolded proteins to aggresomes by binding to both the microtubule cytoskeleton component dynein and polyubiquitylated, misfolded proteins.

    CAS  PubMed  Google Scholar 

  79. Tan, J. M. et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17, 431–439 (2008).

    CAS  PubMed  Google Scholar 

  80. Boyault, C. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 21, 2172–2181 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998). This paper reconstitutes protein disaggregation by Hsp70 and Hsp104 chaperones in vitro.

    CAS  PubMed  Google Scholar 

  82. De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. & Goloubinoff, P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl Acad. Sci. USA 103, 6166–6171 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Queitsch, C., Hong, S. W., Vierling, E. & Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sanchez, Y. & Lindquist, S. L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).

    CAS  PubMed  Google Scholar 

  85. Squires, C. L., Pedersen, S., Ross, B. M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004). This study establishes the basic mechanism of protein disaggregation by Hsp70 and Hsp104 chaperones and establishes the importance of aggregate refolding versus degradation for the acquisition of thermotolerance.

    CAS  PubMed  Google Scholar 

  87. Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279, 44376–44383 (2004).

    CAS  PubMed  Google Scholar 

  88. Haslberger, T. et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25, 247–260 (2007).

    CAS  PubMed  Google Scholar 

  89. Haslberger, T. et al. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nature Struct. Mol. Biol. 15, 641–650 (2008).

    CAS  Google Scholar 

  90. Lum, R., Tkach, J. M., Vierling, E. & Glover, J. R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).

    CAS  PubMed  Google Scholar 

  91. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nature Struct. Mol. Biol. 11, 607–615 (2004).

    CAS  Google Scholar 

  92. Franzmann, T. M., Menhorn, P., Walter, S. & Buchner, J. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol. Cell 29, 207–216 (2008).

    CAS  PubMed  Google Scholar 

  93. Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nature Struct. Mol. Biol. 12, 842–846 (2005).

    CAS  Google Scholar 

  94. Allen, S. P., Polazzi, J. O., Gierse, J. K. & Easton, A. M. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).

    CAS  PubMed  Google Scholar 

  95. Haslbeck, M. et al. Hsp26: a temperature-regulated chaperone. EMBO J. 18, 6744–6751 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Stengel, F. et al. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc. Natl Acad. Sci. USA 107, 2007–2012 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mogk, A. et al. Refolding of substrates bound to small HSPs relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278, 31033–31042 (2003).

    CAS  PubMed  Google Scholar 

  98. Lee, S., Owen, H. A., Prochaska, D. J. & Barnum, S. R. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Curr. Microbiol. 40, 283–287 (2000).

    CAS  PubMed  Google Scholar 

  99. Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E. & Bukau, B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595 (2003).

    CAS  PubMed  Google Scholar 

  100. Ratajczak, E., Zietkiewicz, S. & Liberek, K. Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J. Mol. Biol. 386, 178–189 (2009).

    CAS  PubMed  Google Scholar 

  101. Ehrnsperger, M., Gräber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, G. J., Roseman, A. M., Saibil, H. R. & Vierling, E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    CAS  PubMed  Google Scholar 

  104. Schlothauer, T., Mogk, A., Dougan, D. A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl Acad. Sci. USA 100, 2306–2311 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mosser, D. D., Ho, S. & Glover, J. R. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107–8115 (2004).

    CAS  PubMed  Google Scholar 

  106. Satyal, S. H. et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 97, 5750–5755 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lelouard, H. et al. Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177–182 (2002).

    CAS  PubMed  Google Scholar 

  108. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    CAS  PubMed  Google Scholar 

  109. Yeung, H. O. et al. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans. 36, 62–67 (2008).

    CAS  PubMed  Google Scholar 

  110. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genet. 36, 377–381 (2004).

    CAS  PubMed  Google Scholar 

  111. Wojcik, C., Yano, M. & DeMartino, G. N. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J. Cell Sci. 117, 281–292 (2004).

    CAS  PubMed  Google Scholar 

  112. Kobayashi, T., Manno, A. & Kakizuka, A. Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes Cells 12, 889–901 (2007).

    CAS  PubMed  Google Scholar 

  113. Boyault, C. et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 25, 3357–3366 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    CAS  PubMed  Google Scholar 

  115. Bedford, L. et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 28, 8189–98 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. McClellan, A. J., Tam, S., Kaganovich, D. & Frydman, J. Protein quality control: chaperones culling corrupt conformations. Nature Cell Biol. 7, 736–741 (2005).

    CAS  PubMed  Google Scholar 

  117. Eisele, F. & Wolf, D. H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582, 4143–4146 (2008).

    CAS  PubMed  Google Scholar 

  118. Heck, J. W., Cheung, S. K. & Hampton, R. Y. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. USA 107, 1106–1111 (2010).

    CAS  PubMed  Google Scholar 

  119. Nillegoda, N. B. et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell 21, 2102–2116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Gardner, R. G., Nelson, Z. W. & Gottschling, D. E. Degradation-mediated protein quality control in the nucleus. Cell 120, 803–815 (2005).

    CAS  PubMed  Google Scholar 

  121. Anton, L. C. et al. Intracellular localization of proteasomal degradation of a viral antigen. J. Cell Biol. 146, 113–124 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fabunmi, R. P., Wigley, W. C., Thomas, P. J. & DeMartino, G. N. Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275, 409–413 (2000).

    CAS  PubMed  Google Scholar 

  123. Martin-Aparicio, E. et al. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J. Neurosci. 21, 8772–8781 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Szeto, J. et al. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2, 189–199 (2006).

    CAS  PubMed  Google Scholar 

  125. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004).

    CAS  PubMed  Google Scholar 

  126. Verhoef, L. G., Lindsten, K., Masucci, M. G. & Dantuma, N. P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).

    CAS  PubMed  Google Scholar 

  127. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001). This study observed that expression of aggregation-prone proteins in cell culture leads to an impairment of the ubiquitin proteasome pathway, which could explain cellular dysfunction and death in response to aggregation.

    CAS  PubMed  Google Scholar 

  128. Bennett, E. J., Bence, N. F., Jayakumar, R. & Kopito, R. R. Global impairment of the ubiquitin–proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005).

    CAS  PubMed  Google Scholar 

  129. Holmberg, C. I., Staniszewski, K. E., Mensah, K. N., Matouschek, A. & Morimoto, R. I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 23, 4307–4318 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005).

    CAS  PubMed  Google Scholar 

  131. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004). The authors describe that the sequestration of mammalian target of rapamycin (mTOR) into polyglutamine aggregates induces autophagy, which helps clear the aggregates and reduces polyglutamine toxicity.

    CAS  PubMed  Google Scholar 

  132. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    CAS  PubMed  Google Scholar 

  133. Fortun, J., Dunn, W. A., Jr, Joy, S., Li, J. & Notterpek, L. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J. Neurosci. 23, 10672–10680 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Olzmann, J. A. & Chin, L. S. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome–autophagy pathway. Autophagy 4, 85–87 (2008).

    CAS  PubMed  Google Scholar 

  135. Lee, J. Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  138. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006). References 137 and 138 report that mice deficient in basal autophagy in neuronal cells display a neurodegenerative phenotype and accumulate inclusions of polyubiquitylated proteins, suggesting a role for autophagy in the continous clearance of misfolded proteins.

    CAS  PubMed  Google Scholar 

  139. Korolchuk, V. I., Mansilla, A., Menzies, F. M. & Rubinsztein, D. C. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517–527 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wooten, M. W. et al. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J. Biol. Chem. 283, 6783–6789 (2008).

    CAS  PubMed  Google Scholar 

  141. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005). This article proposed that p62 may provide the missing link between polyubiquitylated proteins and autophagy through association with the autophagic marker LC3 and protein aggregates.

    PubMed  PubMed Central  Google Scholar 

  142. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    CAS  PubMed  Google Scholar 

  143. Kuusisto, E., Salminen, A. & Alafuzoff, I. Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085–2090 (2001).

    CAS  PubMed  Google Scholar 

  144. Kuusisto, E., Salminen, A. & Alafuzoff, I. Early accumulation of p62 in neurofibrillary tangles in Alzheimer's disease: possible role in tangle formation. Neuropathol. Appl. Neurobiol. 28, 228–237 (2002).

    CAS  PubMed  Google Scholar 

  145. Nagaoka, U. et al. Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J. Neurochem. 91, 57–68 (2004).

    CAS  PubMed  Google Scholar 

  146. Zatloukal, K. et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160, 255–263 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    CAS  PubMed  Google Scholar 

  148. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    CAS  PubMed  Google Scholar 

  149. Filimonenko, M. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 38, 265–79 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cummings, C. J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genet. 19, 148–154 (1998).

    CAS  PubMed  Google Scholar 

  152. Kim, S., Nollen, E. A., Kitagawa, K., Bindokas, V. P. & Morimoto, R. I. Polyglutamine protein aggregates are dynamic. Nature Cell Biol. 4, 826–831 (2002).

    CAS  PubMed  Google Scholar 

  153. Ito, H. et al. Inhibition of proteasomes induces accumulation, phosphorylation, and recruitment of HSP27 and αβ-crystallin to aggresomes. J. Biochem. 131, 593–603 (2002).

    CAS  PubMed  Google Scholar 

  154. Maisonneuve, E., Ezraty, B. & Dukan, S. Protein aggregates: an aging factor involved in cell death. J. Bacteriol. 190, 6070–6075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Henderson, K. A. & Gottschling, D. E. A mother's sacrifice: what is she keeping for herself? Curr. Opin. Cell Biol. 20, 723–728 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Steinkraus, K. A., Kaeberlein, M. & Kennedy, B. K. Replicative aging in yeast: the means to the end. Annu. Rev. Cell Dev. Biol. 24, 29–54 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003). This study shows that oxidatively damaged proteins in yeast are retained in mother cells. This is dependent on the ageing-related protein Sir2 and leads to the generation of daughter cells that are largely devoid of damage.

    CAS  PubMed  Google Scholar 

  158. Liu, B. et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267 (2010).

    CAS  PubMed  Google Scholar 

  159. Tessarz, P., Schwarz, M., Mogk, A. & Bukau, B. The yeast AAA+ chaperone Hsp104 is part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol. Cell Biol. 29, 3738–3745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fuentealba, L. C., Eivers, E., Geissert, D., Taelman, V. & De Robertis, E. M. Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc. Natl Acad. Sci. USA 105, 7732–7737 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, e417 (2006). The paper reports on the asymmetric segregation of aggregated proteins to short-lived cells on cell division, preserving the long-lived progeny.

    PubMed  PubMed Central  Google Scholar 

  162. Singhvi, A. & Garriga, G. Asymmetric divisions, aggresomes and apoptosis. Trends Cell Biol. 19, 1–7 (2009).

    CAS  PubMed  Google Scholar 

  163. Stearns, T. Centrosome duplication: a centriolar pas de deux. Cell 105, 417–420 (2001).

    CAS  PubMed  Google Scholar 

  164. Rebollo, E. et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev. Cell 12, 467–474 (2007).

    CAS  PubMed  Google Scholar 

  165. Rusan, N. M. & Peifer, M. A role for a novel centrosome cycle in asymmetric cell division. J. Cell Biol. 177, 13–20 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Yamashita, Y. M., Mahowald, A. P., Perlin, J. R. & Fuller, M. T. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315, 518–521 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Y. Cully for figure preparation. This work was supported by grants of the Deutsche Forschungsgemeinschaft (BU617/17-1) to B.B. and A.M., and of the Network Research Heidelberg to B.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens Tyedmers or Bernd Bukau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bernd Bukau's homepage

Glossary

Conformer

One of many possible structural states from the same protein species.

Molecular chaperone

One of a group of unrelated proteins that interact with non-native polypeptides to assist in their folding, transport and assembly.

Heat shock protein

A protein that shows increased expression in stress conditions through a specialized heat shock-response element in the promoter of the corresponding gene.

AAA+ protease

An ATP-dependent proteolytic machinery that acts in general and regulatory proteolysis.

E3 ubiquitin ligase

A component of the ubiquitin–proteasome system that delivers activated ubiquitin moieties to special substrates and thereby provides substrate specificity for ubiquitylation.

Juxtanuclear quality-control compartment

A compartment for the deposition of soluble, misfolded proteins in yeast and mammals. The targeting of substrates to this deposition involves ubiquitylation.

Insoluble protein deposit

A perivacuolar quality-control compartment for the deposition of terminally aggregated proteins observed in yeast and mammalian cells. One group of substrate proteins accumulating here are aggregates of amyloidogenic proteins.

Ubiquitin proteasome system

A cellular quality-control system for the ubiquitin-dependent degradation of substrate proteins by the proteasome.

E2 ubiquitin-conjugating enzyme

A component of the ubiquitin proteasome system that harbours an activated ubiquitin moiety and cooperates with E3 ligases in substrate ubiquitylation.

Lys63-linked polyubiquitylation

A polyubiquitin chain in which the ubiquitin molecules are linked by the internal Lys63 residue of ubiquitin.

J protein

A co-chaperone of HSP70 chaperones that harbours a characteristic domain called a J domain and is responsible for activating the ATPase activity of HSP70.

Autophagosome

A double-membrane vesicle in the cytoplasm that includes intracellular components for lysosomal degradation.

Polarisome

A protein complex involved in determining cell polarity by directing the localized assembly of actin filaments.

Septin ring

A ring-shaped structure that forms in the division plane at the future septation site.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11, 777–788 (2010). https://doi.org/10.1038/nrm2993

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing