Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Traffic control: regulation of kinesin motors

Key Points

  • Kinesins are a superfamily of molecular motors that generate force and/or motility along microtubule filaments. Kinesins contain a conserved motor domain for ATP hydrolysis and microtubule binding, and divergent non-motor domains for family-specific regulatory mechanisms and functions.

  • The regulation of kinesin motors ensures their proper spatial and temporal activation. A general model is emerging in which kinesin motors are kept inactive by autoinhibitory mechanisms. Recent work has shown that this autoinhibition can be relieved by cargo binding and/or phosphorylation mechanisms.

  • Some kinesin motors drive intracellular transport events during interphase. The association of motors with specific cargos for transport can be regulated by kinases and Rab GTPases. Kinesin-driven cargo transport can be influenced by the state of the microtubule tracks, specifically by post-translational modifications or microtubule-associated proteins on the tracks. The release of cargo at the destination can be regulated by kinases that are part of signalling pathways, which can also be cargos of the motor.

  • Kinesin motors also function in spindle assembly and chromosome segregation during mitosis. The expression levels of these kinesin motors can be regulated by controlling their synthesis anddegradation at different stages of the cell cycle.

  • Mitotic kinesin motors can also be regulated by the small GTPase Ran and by cyclin-dependent kinase, Aurora and Polo-like kinases. These regulatory mechanisms ensure the proper localization and activation of kinesin motors at specific stages of the mitotic cycle.

Abstract

Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autoinhibitory mechanisms used by kinesin motors.
Figure 2: Transport cycle of kinesin motors.
Figure 3: Kinesin motor localization during mitosis in mammalian cells.
Figure 4: Mechanisms of mitotic motor regulation.

Similar content being viewed by others

References

  1. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salinas, S., Bilsland, L. G. & Schiavo, G. Molecular landmarks along the axonal route: axonal transport in health and disease. Curr. Opin. Cell Biol. 20, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Sarli, V. & Giannis, A. Targeting the kinesin spindle protein: basic principles and clinical implications. Clin. Cancer Res. 14, 7583–7587 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wood, K. W., Chua, P., Sutton, D. & Jackson, J. R. Centromere-associated protein E: a motor that puts the brakes on the mitotic checkpoint. Clin. Cancer Res. 14, 7588–7592 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence, C. J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wickstead, B. & Gull, K. A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol. Biol. Cell 17, 1734–1743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta, M. L. Jr., Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nature Cell Biol. 8, 913–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nature Cell Biol. 8, 957–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Mayr, M. I. et al. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17, 488–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kwok, B. H. et al. Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nature Chem. Biol. 2, 480–485 (2006).

    Article  CAS  Google Scholar 

  13. Kim, Y., Heuser, J. E., Waterman, C. M. & Cleveland, D. W. CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J. Cell Biol. 181, 411–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furuta, K., Edamatsu, M., Maeda, Y. & Toyoshima, Y. Y. Diffusion and directed movement: in vitro motile properties of fission yeast kinesin-14 Pkl1. J. Biol. Chem. 283, 36465–36473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furuta, K. & Toyoshima, Y. Y. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro. Curr. Biol. 18, 152–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Hammond, J. W. et al. Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biology 7, e72 (2009).

  17. Fink, G. et al. The mitotic kinesin-14 Ncd drives directional microtubule–microtubule sliding. Nature Cell Biol. 11, 717–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Hirokawa, N. et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Hackney, D. D., Levitt, J. D. & Suhan, J. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992).

    CAS  PubMed  Google Scholar 

  20. Verhey, K. J. et al. Light chain-dependent regulation of Kinesin's interaction with microtubules. J. Cell Biol. 143, 1053–1066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stock, M. F. et al. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin's tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol. 1, 288–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Seiler, S. et al. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nature Cell Biol. 2, 333–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Cai, D., Hoppe, A. D., Swanson, J. A. & Verhey, K. J. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J. Cell Biol. 176, 51–63 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Imanishi, M., Endres, N. F., Gennerich, A. & Vale, R. D. Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. J. Cell Biol. 174, 931–937 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Espeut, J. et al. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol. Cell 29, 637–643 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Wong, Y.L., Dietrich, K.A., Naber, N., Cooke, R. & Rice, S.E. The Kinesin-1 tail conformationally restricts the nucleotide pocket. Biophys. J. 96, 2799–2807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hackney, D. D., Baek, N. & Snyder, A. C. Half-site inhibition of dimeric kinesin head domains by monomeric tail domains. Biochemistry 48, 3448–3456 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hackney, D. D. & Stock, M. F. Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release. Nature Cell Biol. 2, 257–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Dietrich, K. A. et al. The kinesin-1 motor protein is regulated by a direct interaction of its head and tail. Proc. Natl Acad. Sci. USA 105, 8938–8943 (2008). Identifies a direct interaction between the IAK segment in the KHC tail and the enzymatically crucial Switch I helix in the KHC motor of a Kinesin-1. This work provides a detailed molecular mechanism for Kinesin-1 autoinhibition and is a further example of the mechanistic homology between kinesins and small GTPases.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hackney, D. D. & Stock, M. F. Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules. Biochemistry 47, 7770–7778 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Vale, R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J. R. et al. An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. EMBO J. 23, 1506–1515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamada, K. H., Hanada, T. & Chishti, A. H. The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46, 10039–10045 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bathe, F. et al. The complex interplay between the neck and hinge domains in kinesin-1 dimerization and motor activity. Mol. Biol. Cell 16, 3529–3537 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blasius, T. L., Cai, D., Jih, G. T., Toret, C. P. & Verhey, K. J. Two binding partners cooperate to activate the molecular motor Kinesin-1. J. Cell Biol. 176, 11–17 (2007). Together with reference 28, this paper provides the first demonstration of how autoinhibition of a kinesin motor is released for activation of motility. Reference 28 shows that autoinhibition of the kinesin-7 motor CENPE is relieved by phosphorylation of the tail domain, whereas reference 38 shows that binding partners of both the KHC and the KLC inhibitory regions are required for activation of a Kinesin-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho, K. I. et al. RANBP2 is an allosteric activator of the conventional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep. 10, 480–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4, 5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Adio, S. et al. Kinetic and mechanistic basis of the nonprocessive Kinesin-3 motor NcKin3. J. Biol. Chem. 281, 37782–37793 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Dorner, C., Ullrich, A., Haring, H. U. & Lammers, R. The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J. Biol. Chem. 274, 33654–33660 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Pollock, N., de Hostos, E. L., Turck, C. W. & Vale, R. D. Reconstitution of membrane transport powered by a novel dimeric kinesin motor of the Unc104/KIF1A family purified from Dictyostelium. J. Cell Biol. 147, 493–506 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wozniak, M. J. & Allan, V. J. Cargo selection by specific kinesin light chain 1 isoforms. EMBO J. 25, 5457–5468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cahu, J. et al. Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS ONE 3, e3936 (2008).

  47. Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of kinesin-5. J. Cell Biol. 182, 421–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  49. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–50 (2005).

    CAS  PubMed  Google Scholar 

  50. Toda, H. et al. UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev. 22, 3292–3307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Niwa, S., Tanaka, Y. & Hirokawa, N. KIF1Bβ- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biol. 10, 1269–1279 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Caviston, J. P. & Holzbaur, E. L. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16, 530–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Byrd, D. T. et al. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32, 787–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Horiuchi, D. et al. Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr. Biol. 17, 1313–1317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cavalli, V., Kujala, P., Klumperman, J. & Goldstein, L. S. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 168, 775–787 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morfini, G. et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nature Neurosci. 907, 907–916 (2006).

    Article  CAS  Google Scholar 

  59. Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K. & Neumann, H. Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. Faseb J. 20, 2573–2575 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Morfini, G. A. et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neurosci. 12, 864–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Bengs, F., Scholz, A., Kuhn, D. & Wiese, M. LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol. Microbiol. 55, 1606–1615 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Berman, S. A., Wilson, N. F., Haas, N. A. & Lefebvre, P. A. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Burghoorn, J. et al. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 104, 7157–7162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guillaud, L., Wong, R. & Hirokawa, N. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biol. 10, 19–29 (2008). Together with reference 56, this paper provides the first direct evidence of a mechanism for the release of a cargo from its motor at its destination. In both cases, a signalling cascade results in release of the cargo from its motor. In reference 56, components of the regulatory signalling pathway are also cargos of the motor they regulate, whereas in reference 64, the signalling cascade is localized at the motor–cargo's destination.

    Article  CAS  PubMed  Google Scholar 

  65. Midorikawa, R., Takei, Y. & Hirokawa, N. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125, 371–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jacobson, C., Schnapp, B. & Banker, G. A. A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E. & Verhey, K. J. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol. 13 Oct 2009 (doi:10.1371/journal.pbio.1000216).

  70. Dunn, S. et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nature Neurosci. 12, 559–567 (2009). References 69–72 show that Kinesin-1 motors can be influenced by post-translational modifications of tubulin subunits in microtubule tracks. Kinesin-1 motors prefer microtubules marked by detyrosination and/or acetylation in unpolarized cells. Detyrosination provides a polarity cue that directs Kinesin-1 motors to axons in neurons.

    Article  CAS  PubMed  Google Scholar 

  73. Lin, S. X., Gundersen, G. G. & Maxfield, F. R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell 13, 96–109 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hammond, J. W., Cai, D & Verhey, K.J. Tubulin modifications and their cellular functions. Curr. Opin. Cell. Biol. 20, 71–76 (2009).

    Article  CAS  Google Scholar 

  76. Ikegami, K. et al. Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl Acad. Sci. USA 104, 3213–8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verhey, K. J. & Gaertig, J. The tubulin code. Cell Cycle 6, 2152–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143, 777–794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Trinczek, B., Ebneth, A., Mandelkow, E. M. & Mandelkow, E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci. 112, 2355–2367 (1999).

    CAS  PubMed  Google Scholar 

  80. Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. LaPointe, N. E. et al. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J. Neurosci. Res. 87, 440–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 21, 4896–4905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sung, H. H. et al. Drosophila Ensconsin promotes productive recruitment of Kinesin-1 to microtubules. Dev. Cell 15, 866–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Stowers, R. S., Megeath, L. J., Gorska-Andrzejak, J., Meinertzhagen, I. A. & Schwarz, T. L. Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Brickley, K., Smith, M. J., Beck, M. & Stephenson, F. A. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem. 280, 14723–14732 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Guo, X. et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires Milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545–557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Macaskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541–555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, X. & Schwarz, T. L. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009). References 90 and 91 show that the motor–microtubule interaction can be regulated in order to position a cargo, in this case mitochondria, at specific subcellular positions. Signalling pathways that locally increase intracellular Ca2+ levels work through the mitochondrial membrane protein Miro to release Miro-associated kinesin motors from their microtubule tracks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Saotome, M. et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. USA 105, 20728–20733 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Deavours, B. E., Reddy, A. S. & Walker, R. A. Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. Cell. Motil. Cytoskeleton 40, 408–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Vinogradova, M. V., Malanina, G. G., Reddy, V. S., Reddy, A. S. & Fletterick, R. J. Structural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein. J. Struct. Biol. 163, 76–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Brown, K. D., Coulson, R. M., Yen, T. J. & Cleveland, D. W. Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J. Cell Biol. 125, 1303–1312 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Fontijn, R. D. et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol. Cell. Biol. 21, 2944–2955 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carvalho, P., Gupta, M. L. Jr., Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Feine, O., Zur, A., Mahbubani, H. & Brandeis, M. Human Kid is degraded by the APC/C(Cdh1) but not by the APC/C(Cdc20). Cell Cycle 6, 2516–2523 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Ganguly, A., Bhattacharya, R. & Cabral, F. Cell cycle dependent degradation of MCAK: evidence against a role in anaphase chromosome movement. Cell Cycle 7, 3187–3193 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Seguin, L. et al. CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol. Cell. Biol. 29, 570–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Goshima, G. & Vale, R. D. Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol. Biol. Cell 16, 3896–3907 (2005). An RNA interference based rescue strategy was used to examine the localization and function of mitotic kinesins in D. melanogaster S2 cells. Shows that Kinesin-8 and Kinesin-14 motors are sequestered in an active form in the nucleus during interphase and engage their microtubule targets on nuclear envelope breakdown, that the interactions of Kinesin-5 and Kinesin-6 motors with microtubules are regulated by CDC2 phosphorylation, and that Kinesin-8 and Kinesin-13 motors undergo regulated changes in subcellular localization throughout the cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, X. & Erikson, R. L. The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem. Biophys. Res. Commun. 353, 960–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Cai, S., Weaver, L. N., Ems-McClung, S. C. & Walczak, C. E. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol. Biol. Cell 20, 1348–1359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown, K. D., Wood, K. W. & Cleveland, D. W. The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J. Cell Sci. 109, 961–969 (1996).

    CAS  PubMed  Google Scholar 

  108. Unsworth, A., Masuda, H., Dhut, S. & Toda, T. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. Mol. Biol. Cell 19, 5104–5115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clarke, P. R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nature Rev. Mol. Cell Biol. 9, 464–477 (2008).

    Article  CAS  Google Scholar 

  110. Tahara, K. et al. Importin-β and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J. Cell Biol. 180, 493–506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Trieselmann, N., Armstrong, S., Rauw, J. & Wilde, A. Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J. Cell Sci. 116, 4791–4798 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Ems-McClung, S. C., Zheng, Y. & Walczak, C. E. Importin α/β and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15, 46–57 (2004). Together with reference 110, this paper provides biochemical and functional evidence that the GTPase Ran regulates kinesin motors during spindle assembly. Reference 110 shows that importin-α, importin-β and RanGTP facilitate the chromosome loading of Kinesin-10 motors, and reference 112 shows that this pathway also controls the microtubule-binding activity of Kinesin-14 motors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Manning, B. D., Barrett, J. G., Wallace, J. A., Granok, H. & Snyder, M. Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J. Cell Biol. 144, 1219–1233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Allingham, J. S., Sproul, L. R., Rayment, I. & Gilbert, S. P. Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128, 1161–1172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gardner, M. K. et al. The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. J. Cell Biol. 180, 91–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Benanti, J. A., Matyskiela, M. E., Morgan, D. O. & Toczyski, D. P. Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Mol. Cell 33, 581–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005). Together with reference 113, this paper describes the regulation of kinesin localization and function in yeast. Reference 113 shows that Kar3 forms separate complexes with Cik1 and Vik1 and that these accessory proteins target Kar3 to different subcellular locales. Reference 118 also provides important insight into the mechanochemistry of Kar3 by showing that Cik1 targets Kar3 to microtubule plus ends, where minus end-directed motility is coupled to microtubule depolymerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Sawin, K. E. & Mitchison, T. Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc. Natl Acad. Sci. USA 92, 4289–4293 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sharp, D. J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144, 125–38 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Giet, R., Uzbekov, R., Cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem. 274, 15005–15013 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Bishop, J. D., Han, Z. & Schumacher, J. M. The Caenorhabditis elegans Aurora B kinase AIR-2 phosphorylates and is required for the localization of a BimC kinesin to meiotic and mitotic spindles. Mol. Biol. Cell 16, 742–756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rapley, J. et al. The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J. Cell Sci. 121, 3912–3921 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Boleti, H., Karsenti, E. & Vernos, I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, D. et al. Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J. Biol. Chem. 282, 21415–21424 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, X. D. et al. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell 29, 729–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhu, M. et al. Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. J. Biol. Chem. 283, 18916–18925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ashar, H. R. et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J. Biol. Chem. 275, 30451–30457 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Schafer-Hales, K. et al. Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol. Cancer Ther. 6, 1317–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004). References 135–137 identify Aurora B sites of phosphorylation on the Kinesin-13 family member MCAK and show that Aurora B regulates the localization and activity of MCAK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Knowlton, A. L., Lan, W. & Stukenberg, P. T. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr. Biol. 16, 1705–1710 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, X., Lan, W., Ems-McClung, S. C., Stukenberg, P. T. & Walczak, C. E. Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol. Biol. Cell 18, 3264–3276 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell 5, 309–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Knowlton, A. L., Vorozhko, V. V., Lan, W., Gorbsky, G. J. & Stukenberg, P. T. ICIS and Aurora B coregulate the microtubule depolymerase Kif2a. Curr. Biol. 19, 758–763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jang, C. Y., Coppinger, J. A., Seki, A., Yates, J. R., & Fang, G. Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a. J. Cell Sci. 122, 1334–1341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mishima, M., Pavicic, V., Gruneberg, U., Nigg, E. A. & Glotzer, M. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004). Shows that CDK1–cyclin B phosphorylates the motor domain of Kinesin-6 motors and reduces their affinity for microtubules. Degradation of CDK1–cyclin B at anaphase ensures the proper spatial and temporal activation of Kinesin-6 motors.

    Article  CAS  PubMed  Google Scholar 

  144. Severson, A. F., Hamill, D. R., Carter, J. C., Schumacher, J. & Bowerman, B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr. Biol. 10, 1162–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Petronczki, M., Glotzer, M., Kraut, N. & Peters, J. M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev. Cell 12, 713–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Santamaria, A. et al. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol. Biol. Cell 18, 4024–4036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guse, A., Mishima, M. & Glotzer, M. Phosphorylation of ZEN-4/MKLP1 by Aurora B regulates completion of cytokinesis. Curr. Biol. 15, 778–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863–875 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nature Rev. Mol. Cell Biol. 10, 9–20 (2009).

    Article  CAS  Google Scholar 

  151. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Gennerich, A. & Vale, R. D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Moores, C. A. & Milligan, R. A. Lucky 13-microtubule depolymerisation by kinesin-13 motors. J. Cell Sci. 119, 3905–3913 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Valentine, M. T. & Gilbert, S. P. To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Curr. Opin. Cell Biol. 19, 75–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Mazumdar, M. & Misteli, T. Chromokinesins: multitalented players in mitosis. Trends Cell Biol. 15, 349–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Goldstein, A. Y., Wang, X. & Schwarz, T. L. Axonal transport and the delivery of pre-synaptic components. Curr. Opin. Neurobiol. 18, 495–503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Aspengren, S., Hedberg, D., Skold, H. N. & Wallin, M. New insights into melanosome transport in vertebrate pigment cells. Int. Rev. Cell. Mol. Biol. 272, 245–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Shubeita, G. T. et al. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098–1107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Scholey, J. M. Intraflagellar transport motors in cilia: moving along the cell's antenna. J. Cell Biol. 180, 23–29 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Cai, J. Howard, C. Walczak and S. Gilbert for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen J. Verhey.

Related links

Related links

DATABASES

Protein Data Bank

1TUB

FURTHER INFORMATION

Kristen J. Verhey's homepage

Glossary

Ciliopathies

A collection of human diseases that have a common underlying genetic defect in the assembly or function of cilia.

Coiled coil

A structural motif in proteins, often used to control oligomerization, in which two or more coils — α-helical seven amino acid (heptad) repeats — wrap around each other.

Kinesin heavy chain

The catalytic subunit of a Kinesin-1 motor, the domain organization of which consists of a kinesin motor domain, a coiled-coil stalk and a globular tail.

Kinesin light chain

The accessory subunit of a Kinesin-1 motor that contributes to autoinhibition and is important for binding to some cargos.

MAPK family

(Mitogen-activated protein kinase family). A family of Ser/Thr-specific protein kinases that respond to extracellular signals and regulate a range of intracellular events. The MAPK is the third kinase in a cascade and is activated by a MAPK kinase (MAPKK), which is activated by a MAPKK kinase (MAPKKK).

Intraflagellar transport

The system for bidirectional movement of ciliary components along the ciliary axoneme by Kinesin-2 and cytoplasmic dynein motors.

EF hand

A structural domain in proteins that binds to Ca2+ ions.

Guanine nucleotide exchange factor

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a G protein.

Karyogamy

The process during mating in which two haploid nuclei come together and fuse to form a diploid nucleus.

Centrosome

A microtubule organizing centre that contains centrioles and the pericentriolar material that nucleates microtubule polymerization. It duplicates during S phase to create the spindle poles for mitosis.

Metaphase plate

The plane at mid-spindle, perpendicular to the spindle microtubules, where the chromosomes are positioned during metaphase.

Kinetochore

A multiprotein complex that assembles on the centromeric region of chromosomes and attaches to spindle microtubules. The inner kinetochore contains proteins that are tightly and persistently associated with centromeric DNA, whereas the outer kinetochore contains dynamic protein components that interact with microtubules during mitosis.

Mitotic checkpoint

A control mechanism in metaphase that ensures that all chromosomes are properly attached to both spindle poles before the cell can proceed into anaphase.

Chromosome congression

The process by which chromosomes attach to spindle microtubules and align or 'congress' to the metaphase plate. It requires both microtubule dynamics and kinesin motor activities.

Prenylation

A post-translational modification of a protein by the attachment of prenyl moieties (geranyl, farnesyl or geranylgeranyl groups) to a C-terminal Cys residue.

Chromosomal passenger complex

A multiprotein complex that localizes to the kinetochore until early anaphase, when it switches to the central spindle. It consists of the Aurora B kinase, inner centromere protein, survivin and Borealin (also known as Dasra and CDCA8).

Merotelic

Pertains to an incorrect spindle attachment in which a single kinetochore is attached to microtubules from both spindle poles.

Amphitelic

Pertains to a proper spindle attachment in which each sister kinetochore is attached to the microtubules from its nearest facing spindle pole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhey, K., Hammond, J. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10, 765–777 (2009). https://doi.org/10.1038/nrm2782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing