Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building ubiquitin chains: E2 enzymes at work

Key Points

  • The reversible attachment of ubiquitin chains regulates the activity, localization and/or stability of a myriad of cellular proteins.

  • The formation of ubiquitin chains requires the sequential action of three types of enzymes: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s).

  • Humans express at least 38 E2 genes. E2s contain a highly conserved catalytic ubiquitin-conjugating (UBC) domain that interacts with E1s and E3s. Several E2s possess amino- or carboxy-terminal appendices that modulate their interaction with E3s or enable their association with E2 cofactors.

  • E2s are key regulators of ubiquitin chain assembly, and E2s with specific roles in ubiquitin chain initiation or elongation have been described. Some E2s catalyse both initiation and elongation with high specificity and efficiency.

  • E2s can determine the processivity of ubiquitin chain formation. They have evolved distinct strategies to increase the processivity of chain formation, including the recognition of substrate motifs or the preassembly of ubiquitin chains on their active sites.

  • E2s are crucial regulators of ubiquitin chain topology. Most linkage-specific E2s bind to the acceptor ubiquitin in a non-covalent manner to orient a particular Lys residue relative to the E2 active site (charged with the donor ubiquitin).

Abstract

The modification of proteins with ubiquitin chains can change their localization, activity and/or stability. Although ubiquitylation requires the concerted action of ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s), it is the E2s that have recently emerged as key mediators of chain assembly. These enzymes are able to govern the switch from ubiquitin chain initiation to elongation, regulate the processivity of chain formation and establish the topology of assembled chains, thereby determining the consequences of ubiquitylation for the modified proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitylation from an E2 perspective.
Figure 2: Structural representation of E2 interactions.
Figure 3: E2–E3 interaction specificity and the proposed mechanism of E2 catalysis.
Figure 4: Mechanisms for ubiquitin chain initiation and elongation.
Figure 5: Model of ubiquitin chain linkage selection.

Similar content being viewed by others

References

  1. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pickart, C. M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell. Mol. Life Sci. 65, 2397–2406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009). Demonstrates the existence and importance of non-canonical ubiquitin chains in vivo .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375–17386 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Saadon, R., Zaaroor, D., Ziv, T. & Ciechanover, A. The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol. Cell 24, 701–711 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin binding domains — from structures to functions. Nature Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  Google Scholar 

  11. Hurley, J. H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, I., Mi, K. & Rao, H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Sims, J. J. & Cohen, R. E. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol. Cell 33, 775–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nature Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  Google Scholar 

  20. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Scheffner, M., Nuber, U. & Huibregtse, J. M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Michelle, C., Voure'h, P., Mignon, L. & Andres, C. R. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J. Mol. Evol. 68, 616–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, Y., Hwang, W. C. & Basavappa, R. Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J. Biol. Chem. 277, 21913–21921 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ozkan, E., Yu, H. & Deisenhofer, J. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl Acad. Sci. USA 102, 18890–18895 (2005). Suggests that RING E3s mediate the allosteric activation of E2s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eddins, M. J., Carlile, C. M., Gomez, K. M., Pickart, C. M. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nature Struct. Mol. Biol. 13, 915–920 (2006). Together with reference 58, reveals the mechanism of linkage-specific ubiquitin chain formation, in this case for Lys63-linked chains.

    Article  CAS  Google Scholar 

  26. Haas, A. L., Bright, P. M. & Jackson, V. E. Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation. J. Biol. Chem. 263, 13268–13275 (1988).

    CAS  PubMed  Google Scholar 

  27. Lois, L. M. & Lima, C. D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, D. T. et al. Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445, 394–398 (2007). An elegant structural study that defines the molecular basis underlying the communication between E1s and E2s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Jin, J., Li, X., Gygi, S. P. & Harper, J. W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, D. T. et al. A unique E1–E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nature Struct. Mol. Biol. 11, 927–935 (2004).

    Article  CAS  Google Scholar 

  32. Huang, D. T., Zhuang, M., Ayrault, O. & Schulman, B. A. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nature Struct. Mol. Biol. 15, 280–287 (2008). Provides striking insight into the role of N- or C-terminal appendices of E2s in determining E2 specificity.

    Article  CAS  Google Scholar 

  33. Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Summers, M. K., Pan, B., Mukhyala, K. & Jackson, P. K. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol. Cell 31, 544–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Williamson, A. et al. Identification of a physiological E2 module for the human anaphase promoting complex. Proc. Natl Acad. Sci. USA 12 Oct 2009 (doi: 10.1073/pnas.0907887106). Defines the molecular mechanism underlying the formation of Lys11-linked ubiquitin chains by APC/C.

  37. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Fang, S. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 98, 14422–14427 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, B. et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl Acad. Sci. USA 103, 341–346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bailly, V., Lamb, J., Sung, P., Prakash, S. & Prakash, L. Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 8, 811–820 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Xin, H. et al. The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Res. 28, 2847–2854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000). First structural study to illustrate the interaction of an E2 with a RING E3.

    Article  CAS  PubMed  Google Scholar 

  45. Dominguez, C. et al. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12, 633–644 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, M. et al. Chaperoned ubiquitylation — crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yin, Q. et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nature Struct. Mol. Biol. 16, 658–666 (2009).

    Article  CAS  Google Scholar 

  48. Bailly, V., Prakash, S. & Prakash, L. Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein. Mol. Cell Biol. 17, 4536–4543 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kolman, C. J., Toth, J. & Gonda, D. K. Identification of a portable determinant of cell cycle function within the carboxyl-terminal domain of the yeast CDC34 (UBC3) ubiquitin conjugating (E2) enzyme. EMBO J. 11, 3081–3090 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silver, E. T., Gwozd, T. J., Ptak, C., Goebl, M. & Ellison, M. J. A chimeric ubiquitin conjugating enzyme that combines the cell cycle properties of CDC34 (UBC3) and the DNA repair properties of RAD6 (UBC2): implications for the structure, function and evolution of the E2s. EMBO J. 11, 3091–3098 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, W. et al. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc. Natl Acad. Sci. USA 106, 3722–3727 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Das, R. et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674–685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petroski, M. D. & Deshaies, R. J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123, 1107–1120 (2005). A thorough dissection of ubiquitin chain formation by Cdc34 that led to the concept that chain initiation and elongation are carried out by distinct mechanisms.

    Article  CAS  PubMed  Google Scholar 

  54. Wu, P. Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003). A biochemical study providing crucial insight into the mechanism of E2-dependent ubiquitin transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, D. T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  57. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kostova, Z., Mariano, J., Scholz, S., Koenig, C. & Weissman, A. M. A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J. Cell Sci. 122, 1374–1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bazirgan, O. A. & Hampton, R. Y. Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo. J. Biol. Chem. 283, 12797–12810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biol. 9, 422–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hoeller, D. et al. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26, 891–898 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Plafker, S. M., Plafker, K. S., Weissman, A. M. & Macara, I. G. Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. J. Cell Biol. 167, 649–659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodrigo-Brenni, M. C. & Morgan, D. O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007). An elegant study demonstrating the role of distinct ubiquitin chain-initiating E2s and ubiquitin chain-elongating E2s for the yeast APC/C.

    Article  CAS  PubMed  Google Scholar 

  67. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008). Identifies the first role for Lys11-linked ubiquitin chains in controlling cell cycle progression and provides a mechanism by which an E2 and an E3 can cooperate in efficient ubiquitin chain initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Christensen, D. E., Brzovic, P. S. & Klevit, R. E. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nature Struct. Mol. Biol. 14, 941–948 (2007).

    Article  CAS  Google Scholar 

  69. Petroski, M. D. et al. Substrate modification with lysine 63-linked ubiquitin chains through the UBC13-UEV1A ubiquitin-conjugating enzyme. J. Biol. Chem. 282, 29936–29945 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Windheim, M., Peggie, M. & Cohen, P. Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem. J. 409, 723–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Haldeman, M. T., Xia, G., Kasperek, E. M. & Pickart, C. M. Structure and function of ubiquitin conjugating enzyme E2–25K: the tail is a core-dependent activity element. Biochemistry 36, 10526–10537 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Verma, R., Feldman, R. M. & Deshaies, R. J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol. Biol. Cell 8, 1427–1437 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gazdoiu, S., Yamoah, K., Wu, K. & Pan, Z. Q. Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains. Mol. Cell Biol. 27, 7041–7052 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nature Rev. Mol. Cell Biol. 10, 550–563 (2009).

    Article  CAS  Google Scholar 

  80. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  PubMed  Google Scholar 

  81. Baer, R. & Ludwig, T. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr. Opin. Genet. Dev. 12, 86–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Joukov, V. et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W. & Klevit, R. E. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Li, W., Tu, D., Brunger, A. T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333–337 (2007). Together with references 51 and 62, shows that ubiquitin chains can be preassembled on a catalytic Cys of E2 and subsequently be transferred en bloc to a substrate protein.

    Article  CAS  PubMed  Google Scholar 

  85. Cao, J. et al. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab. 6, 115–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, Z. & Pickart, C. M. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J. Biol. Chem. 265, 21835–21842 (1990).

    CAS  PubMed  Google Scholar 

  87. Van Nocker, S. & Vierstra, R. D. Cloning and characterization of a 20-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. Proc. Natl Acad. Sci. USA 88, 10297–10301 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haas, A. L., Reback, P. B. & Chau, V. Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E220K and E232K. J. Biol. Chem. 266, 5104–5112 (1991).

    CAS  PubMed  Google Scholar 

  89. Merkley, N. & Shaw, G. S. Solution structure of the flexible class II ubiquitin-conjugating enzyme Ubc1 provides insights for polyubiquitin chain assembly. J. Biol. Chem. 279, 47139–47147 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, M., Cheng, D., Peng, J. & Pickart, C. M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J. 25, 1710–1719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martinez-Noel, G., Muller, U. & Harbers, K. Identification of molecular determinants required for interaction of ubiquitin-conjugating enzymes and RING finger proteins. Eur. J. Biochem. 268, 5912–5919 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Markson, G. et al. Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Genome Res. Jun 23 2009 (doi: 10.1101/gr.093963.109).

  93. Gazdoiu, S. et al. Proximity-induced activation of human Cdc34 through heterologous dimerization. Proc. Natl Acad. Sci. USA 102, 15053–15058 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5, 417–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for many stimulating discussions. We are grateful to J. Schaletzky for discussions and critically reading the manuscript and C. Wolberger (Johns Hopkins University, Maryland, USA) for providing the coordinates of the Mms2-bound ubiquitin. The work in our laboratories is funded by a National Institutes of Health Director's New Innovator Award (M.R.), RO1 5R01GM083064-02 (M.R.), a March of Dimes grant (M.R.), and the intramural research programme of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH (Y.Y.). M.R. is a Pew Scholar.

Author information

Authors and Affiliations

Authors

Supplementary information

41580_2009_BFnrm2780_MOESM1_ESM.pdf

Supplementary information S1 (table) | A comprehensive list of the known human E2 enzymes and their key features. (PDF 246 kb)

Related links

Related links

FURTHER INFORMATION

Michael Rape's homepage

Yihong Ye's homepage

Glossary

Ubiquitin-interacting motif

A small motif that mediates the interaction of a protein with the hydrophobic patch of ubiquitin around Ile44.

Ubiquitin-associated (UBA) domain

A protein domain that forms a three-helix bundle and interacts with hydrophobic regions of ubiquitin.

26S proteasome

A multisubunit protease that degrades proteins with attached ubiquitin chains. It contains a barrel-like 20S proteolytic core particle that houses the active sites and a 19S regulatory particle that governs substrate recognition and entry into the 20S core particle.

HECT domain

A domain of 40 kDa (350 amino acids) that is found at the C terminus of HECT E3s. It contains a catalytic Cys residue that accepts ubiquitin from an E2 to form a ubiquitin thioester intermediate before transferring the ubiquitin to substrates.

RING domain

A domain that is present in most E3s and is defined by the consensus sequence CX2CX(9–39)CX(1–3)HX(2–3)C/HX2CX(4–48)CX2C (where X means any amino acid). It coordinates two structural zinc cations.

Ubiquitin-conjugating (UBC) domain

A conserved core domain of 150 residues that is found in all E2s, including those for UBLs. It contains the catalytic Cys residue of E2s.

310-helix

A type of secondary protein structure in which the amino acids are in a right-handed helical arrangement. The hydrogen bonds are formed between the NH group of an amino acid and the CO group of the amino acid three residues earlier (as opposed to four residues earlier in an α-helix).

Ubiquitin fold domain

A domain found in E1s that mediates binding to an E2 and forms a similar structure to ubiquitin.

TEK box

A Lys-rich region in APC/C substrates downstream of initial APC/C recognition sites (such as the D box or KEN box), which promotes initiation of ubiquitin chain formation.

D box

The amino acid sequence RXXL(X)nN (where X means any amino acid), which mediates binding of an APC/C substrate to the co-activators Cdc20 and Cdh1 and potentially also to subunits of the core APC/C.

KEN box

The amino acid sequence KEN(X)nP (where X means any amino acid), which mediates binding of APC/C substrates to the co-activator Cdh1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10, 755–764 (2009). https://doi.org/10.1038/nrm2780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing