Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The 3Ms of central spindle assembly: microtubules, motors and MAPs

Key Points

  • The central spindle consists of a set of microtubule bundles in anaphase cells that overlap for a short region at their plus ends.

  • The central spindle regulates cleavage furrow formation and completion of cytokinesis.

  • The central spindle forms in anaphase as cells exit mitosis. In unperturbed cells, the central spindle forms from mitotic spindle microtubules.

  • Under appropriate conditions, a bipolar central spindle can form spontaneously from non-spindle microtubules, without a mitotic spindle template.

  • Central spindle microtubule bundles are highly stabilized.

  • The formation of the central spindle requires kinesin motor proteins, microtubule-associated proteins (MAPs) and protein kinases. The central components include centralspindlin (a complex that contains kinesin and Rho GTPase-activating protein subunits), the microtubule-bundling protein protein regulator of cytokinesis 1 (PRC1) and the chromosome passenger complex (CPC).

  • Several of the proteins that are required for central spindle assembly are inactivated by phosphorylation during metaphase, and activated during anaphase.

  • The precise mechanism of microtubule bundling that results in overlapping microtubule plus ends remains be determined.

  • Models of the interactions of motors, MAPs and microtubules provide useful insights into how stable microtubule overlap can be established and suggest that local regulation of microtubule dynamics might have an important role.

Abstract

During metaphase, sister chromatids are positioned at the midpoint of the microtubule-based mitotic spindle in preparation for their segregation. The onset of anaphase triggers inactivation of the key mitotic kinase cyclin-dependent kinase 1 (CDK1) and the polewards movement of sister chromatids. During anaphase, the mitotic spindle reorganizes in preparation for cytokinesis. Kinesin motor proteins and microtubule-associated proteins bundle the plus ends of interpolar microtubules and generate the central spindle, which regulates cleavage furrow initiation and the completion of cytokinesis. Complementary approaches, including cell biology, genetics and computational modelling, have provided new insights into the mechanism and regulation of central spindle assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of the central spindle.
Figure 2: Structural features of central spindle components.
Figure 3: Localization of central spindle components.
Figure 4: Microtubule bundling mechanisms.
Figure 5: A working model for central spindle assembly.

Similar content being viewed by others

References

  1. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    CAS  PubMed  Google Scholar 

  2. Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123, 1475–1489 (1993).

    CAS  PubMed  Google Scholar 

  3. Schroeder, T. E. Cytokinesis: filaments in the cleavage furrow. Exp. Cell Res. 53, 272–276 (1968).

    CAS  PubMed  Google Scholar 

  4. Schroeder, T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc. Natl Acad. Sci. USA 70, 1688–1192 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mabuchi, I. & Okuno, M. The effect of myosin antibody on the division of starfish blastomeres. J. Cell Biol. 74, 251–263 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Knecht, D. A. & Loomis, W. F. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236, 1081–1086 (1987).

    CAS  PubMed  Google Scholar 

  7. De Lozanne, A. & Spudich, J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091 (1987).

    CAS  PubMed  Google Scholar 

  8. Straight, A. F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003).

    CAS  PubMed  Google Scholar 

  9. Wheatley, S. P. & Wang, Y. Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J. Cell Biol. 135, 981–989 (1996).

    CAS  PubMed  Google Scholar 

  10. Powers, J., Bossinger, O., Rose, D., Strome, S. & Saxton, W. A nematode kinesin required for cleavage furrow advancement. Curr. Biol. 8, 1133–1136 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Raich, W. B., Moran, A. N., Rothman, J. H. & Hardin, J. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol. Biol. Cell 9, 2037–2049 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jantsch-Plunger, V. et al. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    CAS  PubMed  Google Scholar 

  14. Barr, F. A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell 131, 847–860 (2007).

    CAS  PubMed  Google Scholar 

  15. Werner, M. & Glotzer, M. Control of cortical contractility during cytokinesis. Biochem. Soc. Trans. 36, 371–377 (2008).

    CAS  PubMed  Google Scholar 

  16. Somers, W. G. & Saint, R. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev. Cell 4, 29–39 (2003).

    CAS  PubMed  Google Scholar 

  17. Yuce, O., Piekny, A. & Glotzer, M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582 (2005).

    PubMed  PubMed Central  Google Scholar 

  18. Nishimura, Y. & Yonemura, S. Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis. J. Cell Sci. 119, 104–114 (2006).

    CAS  PubMed  Google Scholar 

  19. Kamijo, K. et al. Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol. Biol. Cell 17, 43–55 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dechant, R. & Glotzer, M. Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. Dev. Cell 4, 333–344 (2003).

    CAS  PubMed  Google Scholar 

  21. Bringmann, H. & Hyman, A. A. A cytokinesis furrow is positioned by two consecutive signals. Nature 436, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  22. Werner, M., Munro, E. & Glotzer, M. Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr. Biol. 17, 1286–1297 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Murthy, K. & Wadsworth, P. Dual role for microtubules in regulating cortical contractility during cytokinesis. J. Cell Sci. 121, 2350–2359 (2008).

    CAS  PubMed  Google Scholar 

  24. Piekny, A., Werner, M. & Glotzer, M. Cytokinesis: welcome to the Rho zone. Trends Cell Biol. 15, 651–658 (2005).

    CAS  PubMed  Google Scholar 

  25. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–445 (1996).

    CAS  PubMed  Google Scholar 

  26. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).

    CAS  PubMed  Google Scholar 

  28. Rusan, N. M., Fagerstrom, C. J., Yvon, A. M. & Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein–α tubulin. Mol. Biol. Cell 12, 971–980 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Paweletz, N. Walther Flemming: pioneer of mitosis research. Nature Rev. Mol. Cell Biol. 2, 72–75 (2001).

    CAS  Google Scholar 

  30. Saxton, W. M. & McIntosh, J. R. Interzone microtubule behavior in late anaphase and telophase spindles. J. Cell Biol. 105, 875–886 (1987). Provides an early demonstration that central spindle microtubule bundles are unusually stable and that the sliding of bundles accompanies spindle elongation.

    CAS  PubMed  Google Scholar 

  31. Skop, A. R., Liu, H., Yates, J., Meyer, B. J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    CAS  PubMed  Google Scholar 

  33. Greenbaum, M. P. et al. TEX14 is essential for intercellular bridges and fertility in male mice. Proc. Natl Acad. Sci. USA 103, 4982–4987 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, W. M., Seki, A. & Fang, G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol. Biol. Cell 17, 3881–3896 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    CAS  PubMed  Google Scholar 

  36. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Goss, J. W. & Toomre, D. K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol. 181, 1047–1054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).

    CAS  PubMed  Google Scholar 

  39. Durcan, T. M. et al. Tektin 2 is required for central spindle microtubule organization and the completion of cytokinesis. J. Cell Biol. 181, 595–603 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).

    CAS  PubMed  Google Scholar 

  41. Salmon, E. D., Leslie, R. J., Saxton, W. M., Karow, M. L. & McIntosh, J. R. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J. Cell Biol. 99, 2165–2174 (1984).

    CAS  PubMed  Google Scholar 

  42. Shelden, E. & Wadsworth, P. Interzonal microtubules are dynamic during spindle elongation. J. Cell Sci. 97, 273–281 (1990).

    CAS  PubMed  Google Scholar 

  43. Rosa, J., Canovas, P., Islam, A., Altieri, D. C. & Doxsey, S. J. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol. Biol. Cell 17, 1483–1493 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bucciarelli, E., Giansanti, M. G., Bonaccorsi, S. & Gatti, M. Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. J. Cell Biol. 160, 993–999 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Savoian, M. S., Earnshaw, W. C., Khodjakov, A. & Rieder, C. L. Cleavage furrows formed between centrosomes lacking an intervening spindle and chromosomes contain microtubule bundles, INCENP, and CHO1 but not CENP-E. Mol. Biol. Cell 10, 297–311 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Canman, J. C., Hoffman, D. B. & Salmon, E. D. The role of pre- and post-anaphase microtubules in the cytokinesis phase of the cell cycle. Curr. Biol. 10, 611–664 (2000).

    CAS  PubMed  Google Scholar 

  47. Alsop, G. B. & Zhang, D. Microtubules are the only structural constituent of the spindle apparatus required for induction of cell cleavage. J. Cell Biol. 162, 383–390 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, W. et al. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol. Cell 2, 877–885 (1998). The identification of a mammalian orthologue of Ase1, PRC1, and the initial indications for its involvement in cytokinesis.

    CAS  PubMed  Google Scholar 

  49. Schuyler, S. C., Liu, J. Y. & Pellman, D. The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J. Cell Biol. 160, 517–528 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Muller, S. et al. The plant microtubule-associated protein AtMAP65–63/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412–417 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Loiodice, I. et al. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol. Biol. Cell 16, 1756–1768 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamashita, A., Sato, M., Fujita, A., Yamamoto, M. & Toda, T. The roles of fission yeast Ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 16, 1378–1395 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, C. & Jiang, W. Cell cycle-dependent translocation of PRC1 on the spindle by KIF4 is essential for midzone formation and cytokinesis. Proc. Natl Acad. Sci. USA 102, 343–348 (2005).

    CAS  PubMed  Google Scholar 

  54. Mollinari, C. et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 157, 1175–1186 (2002). Provides a thorough domain analysis of PRC1, and depletion analysis that demonstrates the role of PRC1 in central spindle assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kurasawa, Y., Earnshaw, W. C., Mochizuki, Y., Dohmae, N. & Todokoro, K. Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J. 23, 3237–3248 (2004). Demonstration of biochemical and functional links between the kinesin KIF4A and PRC1.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Janson, M. E. et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357–368 (2007). Demonstration of how the combined activities of PRC1 and a plus-end-directed kinesin slide microtubules to generate bundles.

    CAS  PubMed  Google Scholar 

  57. Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41–54 (2002). Demonstration that CYK4 and MKLP1 form an evolutionarily conserved complex that is required for central spindle assembly.

    CAS  PubMed  Google Scholar 

  58. Pavicic-Kaltenbrunner, V., Mishima, M. & Glotzer, M. Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol. Biol. Cell 18, 4992–5003 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sellitto, C. & Kuriyama, R. Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells. J. Cell Biol. 106, 431–449 (1988). Immunolocalization of a midbody component, subsequently identified as MKLP1, that colocalizes with the electron-dense matrix.

    CAS  PubMed  Google Scholar 

  60. Adams, R. R., Tavares, A. A., Salzberg, A., Bellen, H. J. & Glover, D. M. pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev. 12, 1483–1494 (1998). Pioneering genetic analysis of the role of MKLP1 orthologues in cytokinesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    CAS  PubMed  Google Scholar 

  62. Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997).

    CAS  PubMed  Google Scholar 

  63. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    CAS  PubMed  Google Scholar 

  64. Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160 (2000).

    CAS  PubMed  Google Scholar 

  65. Jeyaprakash, A. A. et al. Structure of a Survivin–Borealin–INCENP core complex reveals how chromosomal passengers travel together. Cell 131, 271–285 (2007). Structural characterization of the CPC revealing that the three proteins co-assemble into a three-stranded helix.

    CAS  PubMed  Google Scholar 

  66. Sessa, F. et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell 18, 379–391 (2005).

    CAS  PubMed  Google Scholar 

  67. Earnshaw, W. C. & Cooke, C. A. Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. J. Cell Sci. 98, 443–461 (1991).

    PubMed  Google Scholar 

  68. Vader, G., Kauw, J. J., Medema, R. H. & Lens, S. M. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 7, 85–92 (2006).

    CAS  PubMed  Google Scholar 

  69. Ban, R., Irino, Y., Fukami, K. & Tanaka, H. Human mitotic spindle-associated protein PRC1 inhibits MgcRacGAP activity toward Cdc42 during the metaphase. J. Biol. Chem. 279, 16394–16402 (2004).

    CAS  PubMed  Google Scholar 

  70. Guse, A., Mishima, M. & Glotzer, M. Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr. Biol. 15, 778–786 (2005).

    CAS  PubMed  Google Scholar 

  71. Neef, R., Klein, U. R., Kopajtich, R. & Barr, F. A. Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr. Biol. 16, 301–307 (2006).

    CAS  PubMed  Google Scholar 

  72. Mackay, A. M., Eckley, D. M., Chue, C. & Earnshaw, W. C. Molecular analysis of the INCENPs (inner centromere proteins): separate domains are required for association with microtubules during interphase and with the central spindle during anaphase. J. Cell Biol. 123, 373–385 (1993).

    CAS  PubMed  Google Scholar 

  73. Wheatley, S. P., Carvalho, A., Vagnarelli, P. & Earnshaw, W. C. INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol. 11, 886–890 (2001).

    CAS  PubMed  Google Scholar 

  74. Hill, E., Clarke, M. & Barr, F. A. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J. 19, 5711–5719 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863–875 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Abaza, A. et al. M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis. J. Biol. Chem. 278, 27844–27852 (2003).

    CAS  PubMed  Google Scholar 

  77. Gruneberg, U., Neef, R., Honda, R., Nigg, E. A. & Barr, F. A. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J. Cell Biol. 166, 167–172 (2004). Demonstration that MKLP2 has a crucial role in mediating the localization of the CPC.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Neef, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biol. 9, 436–444 (2007). Provides a detailed analysis of PRC1 isoforms and demonstrates that the mitotic phosphorylation of PRC1 inhibits the recruitment of PLK1.

    CAS  PubMed  Google Scholar 

  79. Jang, J. K., Rahman, T. & McKim, K. S. The kinesinlike protein Subito contributes to central spindle assembly and organization of the meiotic spindle in Drosophila oocytes. Mol. Biol. Cell 16, 4684–4694 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Maiato, H. et al. MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J. Cell Biol. 157, 749–760 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Inoue, Y. H. et al. Mutations in orbit/mast reveal that the central spindle is comprised of two microtubule populations, those that initiate cleavage and those that propagate furrow ingression. J. Cell Biol. 166, 49–60 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gonzalez, C. et al. Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J. Cell Sci. 96, 605–616 (1990).

    PubMed  Google Scholar 

  83. Wakefield, J. G., Bonaccorsi, S. & Gatti, M. The Drosophila protein Asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153, 637–648 (2001). One of the few papers that provides functional insight into factors that contribute to central spindle assembly by binding to the minus ends of the bundles.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    CAS  PubMed  Google Scholar 

  85. do Carmo Avides, M., Tavares, A. & Glover, D. M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol. 3, 421–424 (2001).

    CAS  PubMed  Google Scholar 

  86. Fabbro, M. et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9, 477–488 (2005).

    CAS  PubMed  Google Scholar 

  87. Verni, F. et al. Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis. Curr. Biol. 14, 1569–1575 (2004).

    CAS  PubMed  Google Scholar 

  88. Mollinari, C. et al. Ablation of PRC1 by small interfering RNA demonstrates that cytokinetic abscission requires a central spindle bundle in mammalian cells, whereas completion of furrowing does not. Mol. Biol. Cell 16, 1043–1055 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Verbrugghe, K. J. & White, J. G. SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr. Biol. 14, 1755–1760 (2004).

    CAS  PubMed  Google Scholar 

  90. Kieserman, E. K., Glotzer, M. & Wallingford, J. B. Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis. Curr. Biol. 18, 116–123 (2008).

    CAS  PubMed  Google Scholar 

  91. Severson, A. F., Hamill, D. R., Carter, J. C., Schumacher, J. & Bowerman, B. The Aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr. Biol. 10, 1162–1171 (2000). An influential paper that used temperature-sensitive alleles to demonstrate a functional interaction between the MKLP1 orthologue and Aurora B and to estimate when they act during cytokinesis.

    CAS  PubMed  Google Scholar 

  92. Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10, 1172–1181 (2000).

    CAS  PubMed  Google Scholar 

  93. Simon, G. C. et al. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J. 27, 1791–1803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Santamaria, A. et al. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol. Biol. Cell 18, 4024–4036 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Petronczki, M., Glotzer, M., Kraut, N. & Peters, J. M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev. Cell 12, 713–725 (2007).

    CAS  PubMed  Google Scholar 

  96. Burkard, M. E. et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl Acad. Sci. USA 104, 4383–4388 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson, E. F., Stewart, K. D., Woods, K. W., Giranda, V. L. & Luo, Y. Pharmacological and functional comparison of the polo-like kinase family: insight into inhibitor and substrate specificity. Biochemistry 46, 9551–9563 (2007).

    CAS  PubMed  Google Scholar 

  98. Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995).

    CAS  PubMed  Google Scholar 

  99. Sawin, K. E. & Mitchison, T. J. Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc. Natl Acad. Sci. USA 92, 4289–4293 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Saunders, A. M., Powers, J., Strome, S. & Saxton, W. M. Kinesin-5 acts as a brake in anaphase spindle elongation. Curr. Biol. 17, R453–R454 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mishima, M., Pavicic, V., Gruneberg, U., Nigg, E. A. & Glotzer, M. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004).

    CAS  PubMed  Google Scholar 

  102. Zhu, C., Lau, E., Schwarzenbacher, R., Bossy-Wetzel, E. & Jiang, W. Spatiotemporal control of spindle midzone formation by PRC1 in human cells. Proc. Natl Acad. Sci. USA 103, 6196–6201 (2006). References 101 and 102 show that mitotic phosphorylation of MKLP1 and PRC1, respectively, inhibit central spindle assembly during mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of Aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Karsenti, E., Nedelec, F. & Surrey, T. Modelling microtubule patterns. Nature Cell Biol. 8, 1204–1211 (2006).

    CAS  PubMed  Google Scholar 

  105. Nedelec, F. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J. Cell Biol. 158, 1005–1015 (2002). A computational exploration of mechanisms that could generate stable microtubule overlap.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229–240 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase Kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Burbank, K. S., Mitchison, T. J. & Fisher, D. S. Slide-and-cluster models for spindle assembly. Curr. Biol. 17, 1373–1383 (2007).

    CAS  PubMed  Google Scholar 

  109. Mitchison, T. J. et al. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol. Biol. Cell 16, 3064–3076 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Channels, W., Nedelec, F., Zheng, Y. & Iglesias, P. Spatial regulation improves antiparallel microtubule overlap during mitotic spindle assembly. Biophys. J. 94, 2598–2609 (2007).

    PubMed  PubMed Central  Google Scholar 

  111. Cheerambathur, D. K. et al. Quantitative analysis of an anaphase B switch: predicted role for a microtubule catastrophe gradient. J. Cell Biol. 177, 995–1004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chalamalasetty, R. B., Hummer, S., Nigg, E. A. & Sillje, H. H. Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission. J. Cell Sci. 119, 3008–3019 (2006).

    CAS  PubMed  Google Scholar 

  113. Hu, C. K., Coughlin, M., Field, C. M. & Mitchison, T. J. Cell polarization during monopolar cytokinesis. J. Cell Biol. 181, 195–202 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Höög, J. L. et al. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev. Cell 12, 349–361 (2007).

    PubMed  Google Scholar 

  115. Drummond, D. R. & Cross, R. A. Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr. Biol. 10, 766–775 (2000).

    CAS  PubMed  Google Scholar 

  116. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Carazo-Salas, R. E., Antony, C. & Nurse, P. The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science 309, 297–300 (2005).

    CAS  PubMed  Google Scholar 

  118. Carazo-Salas, R. E. & Nurse, P. Self-organization of interphase microtubule arrays in fission yeast. Nature Cell Biol. 8, 1102–1107 (2006).

    CAS  PubMed  Google Scholar 

  119. Daga, R. R., Lee, K. G., Bratman, S., Salas-Pino, S. & Chang, F. Self-organization of microtubule bundles in anucleate fission yeast cells. Nature Cell Biol. 8, 1108–1113 (2006).

    CAS  PubMed  Google Scholar 

  120. Powers, J. et al. Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes. J. Cell Biol. 166, 991–1001 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Williams, B. C., Riedy, M. F., Williams, E. V., Gatti, M. & Goldberg, M. L. The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J. Cell Biol. 129, 709–723 (1995).

    CAS  PubMed  Google Scholar 

  122. Toure, A. et al. MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J. Biol. Chem. 273, 6019–6023 (1998).

    CAS  PubMed  Google Scholar 

  123. Goldstein, A. Y., Jan, Y. N. & Luo, L. Function and regulation of Tumbleweed (RacGAP50C) in neuroblast proliferation and neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 3834–3839 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nislow, C., Lombillo, V. A., Kuriyama, R. & McIntosh, J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359, 543–547 (1992).

    CAS  PubMed  Google Scholar 

  125. Terada, Y. et al. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J. 17, 667–676 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schumacher, J. M., Golden, A. & Donovan, P. J. AIR-2: An Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J. Cell Biol. 143, 1635–1646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cooke, C. A., Heck, M. M. & Earnshaw, W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 105, 2053–2067 (1987).

    CAS  PubMed  Google Scholar 

  128. Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and Aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 153, 865–880 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466 (1999).

    CAS  PubMed  Google Scholar 

  130. Fraser, A. G., James, C., Evan, G. I. & Hengartner, M. O. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr. Biol. 9, 292–301 (1999).

    CAS  PubMed  Google Scholar 

  131. Jones, G., Jones, D., Zhou, L., Steller, H. & Chu, Y. Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J. Biol. Chem. 275, 22157–22165 (2000).

    CAS  Google Scholar 

  132. Gassmann, R. et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 166, 179–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    CAS  PubMed  Google Scholar 

  134. Romano, A. et al. CSC-1: a subunit of the Aurora B kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1. J. Cell Biol. 161, 229–236 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hanson, K. K., Kelley, A. C. & Bienz, M. Loss of Drosophila borealin causes polyploidy, delayed apoptosis and abnormal tissue development. Development 132, 4777–4787 (2005).

    CAS  PubMed  Google Scholar 

  136. Lee, K. S., Yuan, Y. L., Kuriyama, R. & Erikson, R. L. Plk is an M-phase-specific protein kinase and interacts with a kinesin- like protein, CHO1/MKLP-1. Mol. Cell Biol. 15, 7143–7151 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mundt, K. E., Golsteyn, R. M., Lane, H. A. & Nigg, E. A. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem. Biophys. Res. Commun. 239, 377–385 (1997).

    CAS  PubMed  Google Scholar 

  138. Wilson, G. M. et al. The FIP3–Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 16, 849–860 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I. & Miki, T. Human ECT2 is an exchange factor for rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J. Cell Biol. 147, 921–928 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank B. Wolfe, E. White and M. Mishima for comments on the manuscript and Z. Thakkar for assistance in producing the micrographs. I thank C. Antony and J. Höög for allowing the use of their figure. The author is supported by Award Number R01GM085087 from the National Institute of General Medical Sciences (M.G. is solely responsible for its content).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

MAP65/Ase1

FURTHER INFORMATION

Michael Glotzer's homepage

A structural model of the survivin–borealin–INCENP complex

Cytosim (Francois Nedelec's microtubule dynamics simulation program)

Glossary

Cytokinesis

The process by which a single cell divides into two physically distinct daughter cells.

Kinetochore

The proteinaceous structure that serves as a physical link between microtubules and the chromatin during mitosis.

Mitotic spindle

A supramolecular structure comprised of microtubules, chromosomes, motor proteins, MAPs and other components that is responsible for segregating chromosomes during mitosis.

Astral microtubule

A microtubule that emanates radially from the centrosome during metaphase and anaphase.

Abscission

The process that results in the severing of the cytoplasmic bridge, which separates the two daughter cells.

Interpolar microtubule

A microtubule that emanates from one spindle pole and bundles with microtubules that come from the opposite pole.

Midbody

The highly compacted structure at the centre of the cytoplasmic bridge between two nascent daughter cells.

FRAP

(Fluorescence recovery after photobleaching). An imaging technique in which a subset of fluorescent molecules are rendered non-fluorescent by intense illumination. The time course of fluorescence recovery reflects the rate at which molecules exchange.

Centrosome

A structure that is enriched in γ-tubulin that nucleates and organizes microtubule minus ends. The centrosome often contains a pair of centrioles.

Coiled-coil domain

A protein structural domain that mediates subunit oligomerization. Coiled coils contain between two and five helices that twist around each other.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10, 9–20 (2009). https://doi.org/10.1038/nrm2609

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing